scispace - formally typeset
Search or ask a question
Author

George Y. Li

Other affiliations: Wilmington University
Bio: George Y. Li is an academic researcher from DuPont. The author has contributed to research in topics: Aryl & Coupling reaction. The author has an hindex of 8, co-authored 17 publications receiving 1061 citations. Previous affiliations of George Y. Li include Wilmington University.

Papers
More filters
Journal ArticleDOI
George Y. Li1
TL;DR: These anionic complexes are anticipated not only to accelerate the rate-determining oxidative addition of aryl chlorides but also to stabilize the palladium complexes in the catalytic cycle.
Abstract: Air-stable palladium complexes [(t-Bu)(2)P(OH)](2)PdCl(2), [(t-Bu)(2)P(OH)PdCl(2)](2), and [[(t-Bu)(2)PO...H...OP((t-Bu)(2)]PdCl](2) serve as efficient catalysts for a variety of cross-coupling reactions of vinyl and aryl chlorides with arylboronic acids, arylzinc reagents, and thiols to yield the corresponding styrene derivatives, biaryls, and thioethers. (31)P NMR and mechanistic studies argue that the phosphinous acid ligands in the complexes can be deprotonated in the presence of a base to yield an electron-rich anionic species, which is likely a catalyst intermediate, and dimeric [[(t-Bu)(2)PO...H...OP((t-Bu)(2)]PdCl](2) was isolated and cystallographically characterized. These anionic complexes are anticipated not only to accelerate the rate-determining oxidative addition of aryl chlorides but also to stabilize the palladium complexes in the catalytic cycle.

184 citations

Journal ArticleDOI
TL;DR: The air-stable phosphine sulfide [(tBu)2P(S)H] serves as a ligand precursor for the efficient nickel-catalyzed cross-coupling reactions of a variety of unactivated aryl chlorides with Grignard reagents (Kumada−Tamao−Corriu reaction) as mentioned in this paper.

63 citations

Journal ArticleDOI
George Y. Li1
TL;DR: In this article, aryl chlorides possessing phosphinous acid ligands have been deprotonated to yield electron-rich anionic species, which is anticipated not only to accelerate the rate-determining oxidative addition of aryls in the catalytic cycle, but also to stabilize the transition-metal complexes.

56 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A wide array of forms of palladium has been utilized as precatalysts for Heck and Suzuki coupling reactions over the last 15 years as mentioned in this paper, and there are now many suggestions in the literature that narrow the scope of types of precatalyst that may be considered true catalysts in these coupling reactions.
Abstract: A wide array of forms of palladium has been utilized as precatalysts for Heck and Suzuki coupling reactions over the last 15 years. Historically, nearly every form of palladium used has been described as the active catalytic species. However, recent research has begun to shed light on the in situ transformations that many palladium precatalysts undergo during and before the catalytic reaction, and there are now many suggestions in the literature that narrow the scope of types of palladium that may be considered true “catalysts” in these coupling reactions. In this work, for each type of precatalyst, the recent literature is summarized and the type(s) of palladium that are proposed to be truly active are enumerated. All forms of palladium, including discrete soluble palladium complexes, solid-supported metal ligand complexes, supported palladium nano- and macroparticles, soluble palladium nanoparticles, soluble ligand-free palladium, and palladium-exchanged oxides are considered and reviewed here. A considerable focus is placed on solid precatalysts and on evidence for and against catalysis by solid surfaces vs. soluble species when starting with various precatalysts. The review closes with a critical overview of various control experiments or tests that have been used by authors to assess the homogeneity or heterogeneity of catalyst systems.

1,737 citations

Journal ArticleDOI

1,566 citations

Journal ArticleDOI
TL;DR: This Review compares classical and photocatalytic procedures for selected classes of reactions and highlights their advantages and limitations.
Abstract: Visible-light photocatalysis has evolved over the last decade into a widely used method in organic synthesis. Photocatalytic variants have been reported for many important transformations, such as cross-coupling reactions, α-amino functionalizations, cycloadditions, ATRA reactions, or fluorinations. To help chemists select photocatalytic methods for their synthesis, we compare in this Review classical and photocatalytic procedures for selected classes of reactions and highlight their advantages and limitations. In many cases, the photocatalytic reactions proceed under milder reaction conditions, typically at room temperature, and stoichiometric reagents are replaced by simple oxidants or reductants, such as air, oxygen, or amines. Does visible-light photocatalysis make a difference in organic synthesis? The prospect of shuttling electrons back and forth to substrates and intermediates or to selectively transfer energy through a visible-light-absorbing photocatalyst holds the promise to improve current procedures in radical chemistry and to open up new avenues by accessing reactive species hitherto unknown, especially by merging photocatalysis with organo- or metal catalysis.

1,211 citations