scispace - formally typeset
Search or ask a question
Author

Georges Aad

Bio: Georges Aad is an academic researcher from Aix-Marseille University. The author has contributed to research in topics: Large Hadron Collider & Higgs boson. The author has an hindex of 135, co-authored 1121 publications receiving 88811 citations. Previous affiliations of Georges Aad include Centre national de la recherche scientifique & University of Udine.


Papers
More filters
Journal ArticleDOI
Georges Aad1, Georges Aad2, T. Abajyan3, Brad Abbott4  +2913 moreInstitutions (170)
TL;DR: In this paper, a search for squarks and gluinos in final states containing jets, missing transverse momentum and no high-p(T) electrons or muons is presented.
Abstract: A search for squarks and gluinos in final states containing jets, missing transverse momentum and no high-p(T) electrons or muons is presented. The data represent the complete sample recorded in 2011 by the ATLAS experiment in 7 TeV proton-proton collisions at the Large Hadron Collider, with a total integrated luminosity of 4.7 fb(-1). No excess above the Standard Model background expectation is observed. Gluino masses below 860 GeV and squark masses below 1320 GeV are excluded at the 95% confidence level in simplified models containing only squarks of the first two generations, a gluino octet and a massless neutralino, for squark or gluino masses below 2 TeV, respectively. Squarks and gluinos with equal masses below 1410 GeV are excluded. In minimal supergravity/constrained minimal supersymmetric Standard Model models with tan beta = 10, A(0) = 0 and mu > 0, squarks and gluinos of equal mass are excluded for masses below 1360 GeV. Constraints are also placed on the parameter space of supersymmetric models with compressed spectra. These limits considerably extend the region of supersymmetric parameter space excluded by previous measurements with the ATLAS detector.

189 citations

Journal ArticleDOI
Georges Aad1, Brad Abbott2, Jalal Abdallah3, Ovsat Abdinov4  +2908 moreInstitutions (209)
TL;DR: In this article, both resonant and nonresonant Higgs boson pair production were performed in the hh -> bb tau tau, gamma gamma WW* final states using 20.3 fb(-1) of collision data at a center-of-m...
Abstract: Searches for both resonant and nonresonant Higgs boson pair production are performed in the hh -> bb tau tau, gamma gamma WW* final states using 20.3 fb(-1) of pp collision data at a center-of-m ...

188 citations

Journal ArticleDOI
Georges Aad1, Brad Abbott2, Jalal Abdallah3, Ovsat Abdinov4  +2814 moreInstitutions (212)
TL;DR: In this article, the authors describe a model-agnostic search for pairs of jets (dijets) produced by resonant and non-resonant phenomena beyond the Standard Model.

185 citations

Journal ArticleDOI
Georges Aad1, Brad Abbott2, Jalal Abdallah3, Ovsat Abdinov4  +2813 moreInstitutions (189)
TL;DR: In this paper, a neural network is used to discriminate between signal and background events, the latter being dominated by +jets production, and an observed (expected) limit of 3.4 (2.2) times the Standard Model cross section is obtained at 95 % confidence level.
Abstract: A search for the Standard Model Higgs boson produced in association with a top-quark pair, , is presented. The analysis uses 20.3 fb(-1) of pp collision data at , collected with the ATLAS detector at the Large Hadron Collider during 2012. The search is designed for the decay mode and uses events containing one or two electrons or muons. In order to improve the sensitivity of the search, events are categorised according to their jet and b-tagged jet multiplicities. A neural network is used to discriminate between signal and background events, the latter being dominated by +jets production. In the single-lepton channel, variables calculated using a matrix element method are included as inputs to the neural network to improve discrimination of the irreducible background. No significant excess of events above the background expectation is found and an observed (expected) limit of 3.4 (2.2) times the Standard Model cross section is obtained at 95 % confidence level. The ratio of the measured signal cross section to the Standard Model expectation is found to be assuming a Higgs boson mass of 125 Gev.

182 citations

Journal ArticleDOI
Georges Aad1, T. Abajyan2, Brad Abbott3, J. Abdallah4  +2936 moreInstitutions (201)
TL;DR: In this article, the authors studied the long-range correlations observed in p + Pb collisions at root s(NN) = 5.02 TeV, the second-order anisotropy parameter of charged particles.

182 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Abstract: Machine Learning is the study of methods for programming computers to learn. Computers are applied to a wide range of tasks, and for most of these it is relatively easy for programmers to design and implement the necessary software. However, there are many tasks for which this is difficult or impossible. These can be divided into four general categories. First, there are problems for which there exist no human experts. For example, in modern automated manufacturing facilities, there is a need to predict machine failures before they occur by analyzing sensor readings. Because the machines are new, there are no human experts who can be interviewed by a programmer to provide the knowledge necessary to build a computer system. A machine learning system can study recorded data and subsequent machine failures and learn prediction rules. Second, there are problems where human experts exist, but where they are unable to explain their expertise. This is the case in many perceptual tasks, such as speech recognition, hand-writing recognition, and natural language understanding. Virtually all humans exhibit expert-level abilities on these tasks, but none of them can describe the detailed steps that they follow as they perform them. Fortunately, humans can provide machines with examples of the inputs and correct outputs for these tasks, so machine learning algorithms can learn to map the inputs to the outputs. Third, there are problems where phenomena are changing rapidly. In finance, for example, people would like to predict the future behavior of the stock market, of consumer purchases, or of exchange rates. These behaviors change frequently, so that even if a programmer could construct a good predictive computer program, it would need to be rewritten frequently. A learning program can relieve the programmer of this burden by constantly modifying and tuning a set of learned prediction rules. Fourth, there are applications that need to be customized for each computer user separately. Consider, for example, a program to filter unwanted electronic mail messages. Different users will need different filters. It is unreasonable to expect each user to program his or her own rules, and it is infeasible to provide every user with a software engineer to keep the rules up-to-date. A machine learning system can learn which mail messages the user rejects and maintain the filtering rules automatically. Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis. Statistics focuses on understanding the phenomena that have generated the data, often with the goal of testing different hypotheses about those phenomena. Data mining seeks to find patterns in the data that are understandable by people. Psychological studies of human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people (concept learning, skill acquisition, strategy change, etc.).

13,246 citations

Journal ArticleDOI
01 Apr 1988-Nature
TL;DR: In this paper, a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) is presented.
Abstract: Deposits of clastic carbonate-dominated (calciclastic) sedimentary slope systems in the rock record have been identified mostly as linearly-consistent carbonate apron deposits, even though most ancient clastic carbonate slope deposits fit the submarine fan systems better. Calciclastic submarine fans are consequently rarely described and are poorly understood. Subsequently, very little is known especially in mud-dominated calciclastic submarine fan systems. Presented in this study are a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) that reveals a >250 m thick calciturbidite complex deposited in a calciclastic submarine fan setting. Seven facies are recognised from core and thin section characterisation and are grouped into three carbonate turbidite sequences. They include: 1) Calciturbidites, comprising mostly of highto low-density, wavy-laminated bioclast-rich facies; 2) low-density densite mudstones which are characterised by planar laminated and unlaminated muddominated facies; and 3) Calcidebrites which are muddy or hyper-concentrated debrisflow deposits occurring as poorly-sorted, chaotic, mud-supported floatstones. These

9,929 citations

Journal ArticleDOI
Georges Aad1, T. Abajyan2, Brad Abbott3, Jalal Abdallah4  +2964 moreInstitutions (200)
TL;DR: In this article, a search for the Standard Model Higgs boson in proton-proton collisions with the ATLAS detector at the LHC is presented, which has a significance of 5.9 standard deviations, corresponding to a background fluctuation probability of 1.7×10−9.

9,282 citations