scispace - formally typeset
Search or ask a question
Author

Georges Bossis

Bio: Georges Bossis is an academic researcher from University of Nice Sophia Antipolis. The author has contributed to research in topics: Magnetorheological fluid & Magnetic field. The author has an hindex of 40, co-authored 149 publications receiving 6296 citations. Previous affiliations of Georges Bossis include Centre national de la recherche scientifique.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a general method for computing the hydrodynamic interactions among N suspended particles, under the condition of vanishingly small particle Reynolds number, is presented, which accounts for both near-field lubrication effects and the dominant many-body interactions.
Abstract: A general method for computing the hydrodynamic interactions among N suspended particles, under the condition of vanishingly small particle Reynolds number, is presented. The method accounts for both near-field lubrication effects and the dominant many-body interactions. The many-body hydrodynamic interactions reproduce the screening characteristic of porous media and the ‘effective viscosity’ of free suspensions. The method is accurate and computationally efficient, permitting the dynamic simulation of arbitrarily configured many-particle systems. The hydrodynamic interactions calculated are shown to agree well with available exact calculations for small numbers of particles and to reproduce slender-body theory for linear chains of particles. The method can be used to determine static (i.e. configuration specific) and dynamic properties of suspended particles that interact through both hydrodynamic and non-hydrodynamic forces, where the latter may be any type of Brownian. colloidal, interparticle or external force. The method is also readily extended to dynamically simulate both unbounded and bounded suspensions.

529 citations

Journal ArticleDOI
TL;DR: In this paper, the Stokesian dynamics is used to investigate the rheological behavior of concentrated suspensions in a simple shear flow, and the simulation results suggest that the suspension viscosity becomes infinite at the percolation-like threshold ϕm owing to the formation of an infinite cluster.
Abstract: The newly developed simulation method known as Stokesian dynamics is used to investigate the rheological behaviour of concentrated suspensions. Both the detailed microstructure (e.g. pair-distribution function) and the macroscopic properties are determined for a suspension of identical rigid spherical particles in a simple shear flow. The suspended particles interact through both hydrodynamic and non-hydrodynamic forces. For suspensions with purely hydrodynamic forces, the increase in the suspension viscosity with volume fraction ϕ is shown to be caused by particle clustering. The cluster formation results from the lubrication forces, and the simulations of a monolayer of spheres show a scaling law for the cluster size: lc ∼ [1 − (ϕ/ϕm)½]−1, where ϕm is the maximum volume fraction that can shear homogeneously. The simulation results suggest that the suspension viscosity becomes infinite at the percolation-like threshold ϕm owing to the formation of an infinite cluster. The predicted simulation viscosities are in very good agreement with experiment. A suspension with short-range repulsive interparticle forces is also studied, and is seen to have a non-Newtonian rheology. Normal-stress differences arise owing to the anisotropic local structure created by the interparticle forces. The repulsive forces also reduce particle clustering, and as a result the suspension is shear-thickening.

519 citations

Journal ArticleDOI
TL;DR: In this article, the viscosity of a suspension of spherical Brownian particles is determined by Stokesian dynamics as a function of the Peclet number, and a theoretical derivation of the direct contribution of the Brownian motion to the bulk stress is given, along with results obtained from a simulation of a monolayer.
Abstract: The viscosity of a suspension of spherical Brownian particles is determined by Stokesian dynamics as a function of the Peclet number. Several new aspects concerning the theoretical derivation of the direct contribution of the Brownian motion to the bulk stress are given, along with the results obtained from a simulation of a monolayer. The simulations reproduce the experimental behavior generally observed in dense suspensions, and an explanation of this behavior is given by observing the evolution of the different contributions to the viscosity with shear rate. The shear thinning at low Peclet numbers is due to the disappearance of the direct Brownian contribution to the viscosity; the deformation of the equilibrium microstructure is, however, small. By contrast, at very high Peclet numbers the suspension shear thickens due to the formation of large clusters.

468 citations

Journal ArticleDOI
TL;DR: In this paper, the non-equilibrium behavior of concentrated colloidal dispersions is studied by Stokesian Dynamics, a general molecular-dynamics-like technique for simulating particles suspended in a viscous fluid.
Abstract: The non-equilibrium behaviour of concentrated colloidal dispersions is studied by Stokesian Dynamics, a general molecular-dynamics-like technique for simulating particles suspended in a viscous fluid. The simulations are of a suspension of monodisperse Brownian hard spheres in simple shear flow as a function of the Peclet number, Pe, which measures the relative importance of shear and Brownian forces. Three clearly defined regions of behaviour are revealed. There is first a Brownian-motion-dominated regime (Pe ≤ 1) where departures from equilibrium in structure and diffusion are small, but the suspension viscosity shear thins dramatically. When the Brownian and hydrodynamic forces balance (Pe ≈ 10), the dispersion forms a new ‘phase’ with the particles aligned in ‘strings’ along the flow direction and the strings are arranged hexagonally. This flow-induced ordering persists over a range of Pe and, while the structure and diffusivity now vary considerably, the rheology remains unchanged. Finally, there is a hydrodynamically dominated regime (Pe > 200) with a dramatic change in the long-time self-diffusivity and the rheology. Here, as the Peclet number increases the suspension shear thickens owing to the formation of large clusters. The simulation results are shown to agree well with experiment.

316 citations

Journal ArticleDOI
TL;DR: In this article, a general method for simulating the dynamical behavior of a suspension of particles which interact through both hydrodynamic and non-hydrodynamic forces is presented, and two different procedures for computing the interactions among particles are used.
Abstract: A general method is presented for simulating the dynamical behavior of a suspension of particles which interact through both hydrodynamic and nonhydrodynamic forces. In the molecular-dynamics-like simulation there are two different procedures for computing the interactions among particles: a pairwise additivity of forces and a pairwise additivity of velocities. The pairwise additivity of forces is the preferred method as it preserves the hydrodynamic lubrication forces which prevent particles from overlapping. The two methods are compared in a simulation of a monolayer of identical rigid non-Brownian spherical particles in a simple shear flow. Periodic boundary conditions are used to model an infinite suspension. Both methods predict the presence of a shear induced anisotropic local structure whose form and strength depend on the concentration of particles, the nonhydrodynamic forces, and the shear rate. Increasing the particle concentration up to near the maximum fraction that can still flow results in a transition to a layered structure in which planes of particles slide relative to one another. The anisotropic local structure and transition to a layered structure predict a non-Newtonian suspension rheology.

310 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the basic laws describing the essential aspects of collective motion are reviewed and a discussion of the various facets of this highly multidisciplinary field, including experiments, mathematical methods and models for simulations, are provided.
Abstract: We review the observations and the basic laws describing the essential aspects of collective motion -- being one of the most common and spectacular manifestation of coordinated behavior Our aim is to provide a balanced discussion of the various facets of this highly multidisciplinary field, including experiments, mathematical methods and models for simulations, so that readers with a variety of background could get both the basics and a broader, more detailed picture of the field The observations we report on include systems consisting of units ranging from macromolecules through metallic rods and robots to groups of animals and people Some emphasis is put on models that are simple and realistic enough to reproduce the numerous related observations and are useful for developing concepts for a better understanding of the complexity of systems consisting of many simultaneously moving entities As such, these models allow the establishing of a few fundamental principles of flocking In particular, it is demonstrated, that in spite of considerable differences, a number of deep analogies exist between equilibrium statistical physics systems and those made of self-propelled (in most cases living) units In both cases only a few well defined macroscopic/collective states occur and the transitions between these states follow a similar scenario, involving discontinuity and algebraic divergences

2,120 citations

Journal ArticleDOI
TL;DR: In this article, a general technique for simulating solid-fluid suspensions is described, which combines Newtonian dynamics of the solid particles with a discretized Boltzmann equation for the fluid phase; the many-body hydrodynamic interactions are fully accounted for, both in the creeping flow regime and at higher Reynolds numbers.
Abstract: A new and very general technique for simulating solid–fluid suspensions is described; its most important feature is that the computational cost scales linearly with the number of particles. The method combines Newtonian dynamics of the solid particles with a discretized Boltzmann equation for the fluid phase; the many-body hydrodynamic interactions are fully accounted for, both in the creeping-flow regime and at higher Reynolds numbers. Brownian motion of the solid particles arises spontaneously from stochastic fluctuations in the fluid stress tensor, rather than from random forces or displacements applied directly to the particles. In this paper, the theoretical foundations of the technique are laid out, illustrated by simple analytical and numerical examples; in a companion paper (Part 2), extensive numerical tests of the method, for stationary flows, time-dependent flows, and finite-Reynolds-number flows, are reported.

2,073 citations

Journal ArticleDOI
TL;DR: In this article, a model for controllable fluid dampers is proposed that can effectively portray the behavior of a typical magnetorheological (MR) damper and compared with experimental results for a prototype damper.
Abstract: Semiactive control devices have received significant attention in recent years because they offer the adaptability of active control devices without requiring the associated large power sources. Magnetorheological (MR) dampers are semiactive control devices that use MR fluids to produce controllable dampers. They potentially offer highly reliable operation and can be viewed as fail-safe in that they become passive dampers should the control hardware malfunction. To develop control algorithms that take full advantage of the unique features of the MR damper, models must be developed that can adequately characterize the damper's intrinsic nonlinear behavior. Following a review of several idealized mechanical models for controllable fluid dampers, a new model is proposed that can effectively portray the behavior of a typical MR damper. Comparison with experimental results for a prototype damper indicates that the model is accurate over a wide range of operating conditions and is adequate for control design an...

1,897 citations

Journal ArticleDOI
TL;DR: Biocompatibility, Pharmaceutical and Biomedical Applications L. Harivardhan Reddy,‡ Jose ́ L. Arias, Julien Nicolas,† and Patrick Couvreur*,†.
Abstract: Biocompatibility, Pharmaceutical and Biomedical Applications L. Harivardhan Reddy,†,‡ Jose ́ L. Arias, Julien Nicolas,† and Patrick Couvreur*,† †Laboratoire de Physico-Chimie, Pharmacotechnie et Biopharmacie, Universite ́ Paris-Sud XI, UMR CNRS 8612, Faculte ́ de Pharmacie, IFR 141, 5 rue Jean-Baptiste Cleḿent, F-92296 Chat̂enay-Malabry, France Departamento de Farmacia y Tecnología Farmaceútica, Facultad de Farmacia, Campus Universitario de Cartuja s/n, Universidad de Granada, 18071 Granada, Spain ‡Pharmaceutical Sciences Department, Sanofi, 13 Quai Jules Guesdes, F-94403 Vitry-sur-Seine, France

1,705 citations