scispace - formally typeset
Search or ask a question
Author

Georgia Sotiropoulou

Bio: Georgia Sotiropoulou is an academic researcher from RMIT University. The author has contributed to research in topics: Kallikrein & Cancer. The author has an hindex of 38, co-authored 97 publications receiving 4589 citations. Previous affiliations of Georgia Sotiropoulou include Mount Sinai Hospital, Toronto & University of Patras.


Papers
More filters
Journal ArticleDOI
TL;DR: It is indicated that multiple KLKs may participate in desquamation through cleavage of desmoglein 1 and regulation by LEKTI and these findings may have clinical implications for the treatment of skin disorders in which KLK activity is elevated.

264 citations

Journal ArticleDOI
TL;DR: Protease M expression (mRNA) may be a useful marker in the detection of primary mammary carcinomas, as well as primary ovarian cancers, and other medical applications are also likely, based on sequence relatedness to trypsin and PSA.
Abstract: Using differential display (DD), we discovered a new member of the serine protease family of protein-cleaving enzymes, named protease M. The gene is most closely related by sequence to the kallikreins, to prostate-specific antigen (PSA), and to trypsin. The diagnostic use of PSA in prostate cancer suggested that a related molecule might be a predictor for breast or ovarian cancer. This, in turn, led to studies designed to characterize the protein and to screen for its expression in cancer. The isolation of protease M by DD, the cloning and sequencing of the cDNA, and the comparison of the predicted protein structure with related proteins are described, as are methods to produce recombinant proteins and polyclonal antibody preparations. Protease M expression was examined in mammary, prostate, and ovarian cancer, as well as normal, cells and tissues. Stable transfectants expressing the protease M gene were produced in mammary carcinoma cells. Protease M was localized by fluorescent in situ hybridization analysis to chromosome 19q13.3, in a region to which other kallikreins and PSA also map. The gene is expressed in the primary mammary carcinoma lines tested but not in the corresponding cell lines of metastatic origin. It is strongly expressed in ovarian cancer tissues and cell lines. The enzyme activity could not be established, because of difficulties in producing sufficient recombinant protein, a common problem with proteases. Transfectants were selected that overexpress the mRNA, but the protein levels remained very low. Protease M expression (mRNA) may be a useful marker in the detection of primary mammary carcinomas, as well as primary ovarian cancers. Other medical applications are also likely, based on sequence relatedness to trypsin and PSA.

234 citations

Journal ArticleDOI
TL;DR: Kallikrein-related peptidases constitute a single family of 15 (chymo)trypsin-like proteases (KLK1–15) with pleiotropic physiological roles and represent attractive biomarkers for clinical applications and potential therapeutic targets for common human pathologies.

213 citations

Journal ArticleDOI
TL;DR: The data indicate that EB1089 performs three key functions of a cancer chemoprevention agent; it is antiproliferative, it induces cellular differentiation, and has potential genoprotective effects.
Abstract: The active form of vitamin D3, 1alpha,25-dihydroxyvitamin D3 [1,25-(OH)2D3] is key mediator of calcium homeostasis and is a component of the complex homeostatic system of the skin. 1,25-(OH)2D3 regulates cellular differentiation and proliferation and has broad potential as an anticancer agent. Oligonucleotide microarrays were used to assess profiles of target gene regulation at several points over a 48 h period by the low calcemic 1,25-(OH)2D3 analog EB1089 in human SCC25 head and neck squamous carcinoma cells. One hundred fifty-two targets were identified, composed of 89 up- and 63 down-regulated genes distributed in multiple profiles of regulation. Results are consistent with EB1089 driving SCC25 cells toward a less malignant phenotype, similar to that of basal keratinocytes. Targets identified control inter- and intra-cellular signaling, G protein-coupled receptor function, intracellular redox balance, cell adhesion, and extracellular matrix composition, cell cycle progression, steroid metabolism, and more than 20 genes modulating immune system function. The data indicate that EB1089 performs three key functions of a cancer chemoprevention agent; it is antiproliferative, it induces cellular differentiation, and has potential genoprotective effects. While no evidence was found for gene-specific differences in efficacy of 1,25-(OH)2D3 and EB1089, gene regulation by 1,25-(OH)2D3 was generally more transient. Treatment of cells with 1,25-(OH)2D3 and the cytochrome P450 inhibitor ketoconazole produced profiles of regulation essentially identical to those observed with EB1089 alone, indicating that the more sustained regulation by EB1089 was due to its resistance to inactivation by induced 24-hydroxylase activity. This suggests that differences in action of the two compounds arise more from their relative sensitivities to metabolism than from differing effects on VDR function.

182 citations

Journal ArticleDOI
TL;DR: The results indicate that ISMN and ISDN inhibit angiogenesis and tumour growth and metastasis in an animal tumour model, and it is considered that these nitrovasodilators which are widely used therapeutically and have well characterized pharmacological profiles, may also possess antitumour properties in the clinic.
Abstract: 1. The effect of the nitric oxide (NO)-producing nitrovasodilators isosorbide mononitrate (ISMN) and isosorbide dinitrate (ISDN) were assessed on (a) the in vivo model of angiogenesis of the chick chorioallantoic membrane (CAM) and (b) on the growth and metastatic properties of the Lewis Lung carcinoma (LLC) in mice. 2. Isosorbide 5-mononitrate (ISMN) and isosorbide dinitrate (ISDN), inhibited angiogenesis in the CAM dose-dependently. ISMN was more potent in inhibiting this process. Both compounds were capable of completely reversing the angiogenic effect of alpha-thrombin. These effects of ISMN and ISDN on angiogenesis were comparable to those previously observed with sodium nitroprusside which generates NO non-enzymatically. 3. Mice, implanted intramuscularly with LLC, received daily i.p. injections of ISMN for 14 days resulting in a significant decrease in the size of the primary tumour and a reduction in the number and size of metastatic foci in the lungs. ISDN had a similar but less pronounced effect than that observed with ISMN. 4. Addition of ISMN or ISDN to cultures of bovine, rabbit and human endothelial cells and to cultures of LLC cells had no effect on their growth characteristics. 5. These results indicate that ISMN and ISDN inhibit angiogenesis and tumor growth and metastasis in an animal tumour model. The possibility should therefore be considered that these nitrovasodilators which are widely used therapeutically and have well characterized pharmacological profiles, may also possess antitumour properties in the clinic.

167 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, the interactions between cancer cells and their micro-and macro-environment create a context that promotes tumour growth and protects it from immune attack, and the functional association of cancer cells with their surrounding tissues forms a new 'organ' that changes as malignancy progresses.
Abstract: The interactions between cancer cells and their micro- and macroenvironment create a context that promotes tumour growth and protects it from immune attack. The functional association of cancer cells with their surrounding tissues forms a new 'organ' that changes as malignancy progresses. Investigation of this process might provide new insights into the mechanisms of tumorigenesis and could also lead to new therapeutic targets.

1,975 citations

Journal ArticleDOI
TL;DR: Global miRNA depletion caused by genetic and epigenetic alterations in components of the miRNA biogenesis machinery is oncogenic, highlighting the importance of miRNA dysregulation in cancer.
Abstract: MicroRNAs (miRNAs) are critical regulators of gene expression. Amplification and overexpression of individual 'oncomiRs' or genetic loss of tumour suppressor miRNAs are associated with human cancer and are sufficient to drive tumorigenesis in mouse models. Furthermore, global miRNA depletion caused by genetic and epigenetic alterations in components of the miRNA biogenesis machinery is oncogenic. This, together with the recent identification of novel miRNA regulatory factors and pathways, highlights the importance of miRNA dysregulation in cancer.

1,659 citations

Journal ArticleDOI
TL;DR: This review focuses on how miRNAs regulate the development of human tumors by acting as tumor suppressors or oncogenes.
Abstract: MicroRNAs (miRNAs) are endogenous, small non-coding RNAs that function in regulation of gene expression. Compelling evidences have demonstrated that miRNA expression is dysregulated in human cancer through various mechanisms, including amplification or deletion of miRNA genes, abnormal transcriptional control of miRNAs, dysregulated epigenetic changes and defects in the miRNA biogenesis machinery. MiRNAs may function as either oncogenes or tumor suppressors under certain conditions. The dysregulated miRNAs have been shown to affect the hallmarks of cancer, including sustaining proliferative signaling, evading growth suppressors, resisting cell death, activating invasion and metastasis, and inducing angiogenesis. An increasing number of studies have identified miRNAs as potential biomarkers for human cancer diagnosis, prognosis and therapeutic targets or tools, which needs further investigation and validation. In this review, we focus on how miRNAs regulate the development of human tumors by acting as tumor suppressors or oncogenes.

1,535 citations

Journal ArticleDOI
TL;DR: Because the responsibilities assigned to caveolae continue to increase, this review will focus on: (i) caveolin structure/function and (ii) Caveolae-associated signal transduction.

1,515 citations

Journal ArticleDOI
TL;DR: 1,25(OH)2D3 thus directly regulates antimicrobial peptide gene expression, revealing the potential of its analogues in treatment of opportunistic infections.
Abstract: The hormonal form of vitamin D3, 1,25-dihydroxyvitamin D3 (1,25(OH)2D3), is an immune system modulator and induces expression of the TLR coreceptor CD14. 1,25(OH)2D3 signals through the vitamin D receptor, a ligand-stimulated transcription factor that recognizes specific DNA sequences called vitamin D response elements. In this study, we show that 1,25(OH)2D3 is a direct regulator of antimicrobial innate immune responses. The promoters of the human cathelicidin antimicrobial peptide (camp) and defensin β2 (defB2) genes contain consensus vitamin D response elements that mediate 1,25(OH)2D3-dependent gene expression. 1,25(OH)2D3 induces antimicrobial peptide gene expression in isolated human keratinocytes, monocytes and neutrophils, and human cell lines, and 1,25(OH)2D3 along with LPS synergistically induce camp expression in neutrophils. Moreover, 1,25(OH)2D3 induces corresponding increases in antimicrobial proteins and secretion of antimicrobial activity against pathogens including Pseudomonas aeruginosa. 1,25(OH)2D3 thus directly regulates antimicrobial peptide gene expression, revealing the potential of its analogues in treatment of opportunistic infections.

1,454 citations