scispace - formally typeset
Search or ask a question
Author

Georgia Tech

Bio: Georgia Tech is an academic researcher. The author has contributed to research in topics: IEEE 802.11r-2008 & IEEE 802.2. The author has an hindex of 1, co-authored 1 publications receiving 199 citations.


Cited by
More filters
Posted Content•
TL;DR: In this paper, the authors reviewed some main results and progress in distributed multi-agent coordination, focusing on papers published in major control systems and robotics journals since 2006, and proposed several promising research directions along with some open problems that are deemed important for further investigations.
Abstract: This article reviews some main results and progress in distributed multi-agent coordination, focusing on papers published in major control systems and robotics journals since 2006. Distributed coordination of multiple vehicles, including unmanned aerial vehicles, unmanned ground vehicles and unmanned underwater vehicles, has been a very active research subject studied extensively by the systems and control community. The recent results in this area are categorized into several directions, such as consensus, formation control, optimization, task assignment, and estimation. After the review, a short discussion section is included to summarize the existing research and to propose several promising research directions along with some open problems that are deemed important for further investigations.

1,655 citations

Journal Article•DOI•
TL;DR: The glider coordinated control system (GCCS) uses a detailed glider model for prediction and a simple particle model for planning to steer a fleet of underwater gliders to a set of coordinated trajectories.
Abstract: The glider coordinated control system (GCCS) uses a detailed glider model for prediction and a simple particle model for planning to steer a fleet of underwater gliders to a set of coordinated trajectories. The GCCS also serves as a simulation testbed for the design and evaluation of multivehicle control laws. In this brief, we describe the GCCS and present experimental results for a virtual deployment in Monterey Bay, CA and a real deployment in Buzzards Bay, MA.

236 citations

Journal Article•DOI•
TL;DR: A control design approach which stabilizes a haptic interface when coupled to a broad class of human operators and virtual environments is outlined, including structural flexibility and noncollocation of sensors and actuators.
Abstract: The goal of control law design for haptic displays is to provide a safe and stable user interface while maximizing the operator's sense of kinesthetic immersion in a virtual environment. This paper outlines a control design approach which stabilizes a haptic interface when coupled to a broad class of human operators and virtual environments. Two-port absolute stability criteria are used to develop explicit control law design bounds for two different haptic display implementations: the impedance display and admittance display. The strengths and weaknesses of each approach are illustrated through numerical and experimental results for a three degree-of-freedom device. The example highlights the ability of the proposed design procedure to handle some of the more difficult problems in control law synthesis for haptics, including structural flexibility and noncollocation of sensors and actuators.

183 citations

Journal Article•DOI•
TL;DR: In this paper, the design, construction, and test of an integrated flywheel energy storage system with a homopolar inductor motor/generator and high-frequency drive is presented.
Abstract: The design, construction, and test of an integrated flywheel energy storage system with a homopolar inductor motor/generator and high-frequency drive is presented in this paper. The work is presented as an integrated design of flywheel system, motor, drive, and controller. The motor design features low rotor losses, a slotless stator, construction from robust and low cost materials, and a rotor that also serves as the energy storage rotor for the flywheel system. A high-frequency six-step drive scheme is used in place of pulsewidth modulation because of the high electrical frequencies. A speed-sensorless controller that works without state estimation is also described. A prototype of the flywheel system has been demonstrated at a power level of 9.4 kW, with an average system efficiency of 83% over a 30000-60000 r/min speed range.

165 citations

Journal Article•DOI•
TL;DR: The aim of this paper is to develop a combined system identification and robust control design procedure for high performance motion control and apply it to a wafer stage and confirm that the proposed procedure significantly extends existing results and enables next-generation motion control design.
Abstract: Next-generation precision motion systems are lightweight to meet stringent requirements regarding throughput and accuracy. Such lightweight systems typically exhibit lightly damped flexible dynamics in the controller cross-over region. State-of-the-art modeling and motion control design procedures do not deliver the required model complexity and fidelity to control the flexible dynamical behavior. The aim of this paper is to develop a combined system identification and robust control design procedure for high performance motion control and apply it to a wafer stage. Hereto, new connections between system identification and robust control are employed. The experimental results confirm that the proposed procedure significantly extends existing results and enables next-generation motion control design.

163 citations