scispace - formally typeset
Search or ask a question
Author

Georgios Tsagkogeorgas

Bio: Georgios Tsagkogeorgas is an academic researcher from Leibniz Association. The author has contributed to research in topics: Cloud condensation nuclei & Nucleation. The author has an hindex of 14, co-authored 17 publications receiving 2694 citations.

Papers
More filters
Journal ArticleDOI
25 Aug 2011-Nature
TL;DR: First results from the CLOUD experiment at CERN are presented, finding that atmospherically relevant ammonia mixing ratios of 100 parts per trillion by volume, or less, increase the nucleation rate of sulphuric acid particles more than 100–1,000-fold and ion-induced binary nucleation of H2SO4–H2O can occur in the mid-troposphere but is negligible in the boundary layer.
Abstract: Atmospheric aerosols exert an important influence on climate through their effects on stratiform cloud albedo and lifetime and the invigoration of convective storms. Model calculations suggest that almost half of the global cloud condensation nuclei in the atmospheric boundary layer may originate from the nucleation of aerosols from trace condensable vapours, although the sensitivity of the number of cloud condensation nuclei to changes of nucleation rate may be small. Despite extensive research, fundamental questions remain about the nucleation rate of sulphuric acid particles and the mechanisms responsible, including the roles of galactic cosmic rays and other chemical species such as ammonia. Here we present the first results from the CLOUD experiment at CERN. We find that atmospherically relevant ammonia mixing ratios of 100 parts per trillion by volume, or less, increase the nucleation rate of sulphuric acid particles more than 100–1,000-fold. Time-resolved molecular measurements reveal that nucleation proceeds by a base-stabilization mechanism involving the stepwise accretion of ammonia molecules. Ions increase the nucleation rate by an additional factor of between two and more than ten at ground-level galactic-cosmic-ray intensities, provided that the nucleation rate lies below the limiting ion-pair production rate. We find that ion-induced binary nucleation of H_(2)SO_(4)–H_(2)O can occur in the mid-troposphere but is negligible in the boundary layer. However, even with the large enhancements in rate due to ammonia and ions, atmospheric concentrations of ammonia and sulphuric acid are insufficient to account for observed boundary-layer nucleation.

1,071 citations

Journal ArticleDOI
Joao Almeida1, Joao Almeida2, Siegfried Schobesberger3, Andreas Kürten1, Ismael K. Ortega3, Oona Kupiainen-Määttä3, Arnaud P. Praplan4, Alexey Adamov3, António Amorim5, F. Bianchi4, Martin Breitenlechner6, A. David2, Josef Dommen4, Neil M. Donahue7, Andrew J. Downard8, Eimear M. Dunne9, Jonathan Duplissy3, Sebastian Ehrhart1, Richard C. Flagan8, Alessandro Franchin3, Roberto Guida2, Jani Hakala3, Armin Hansel6, Martin Heinritzi6, Henning Henschel3, Tuija Jokinen3, Heikki Junninen3, Maija Kajos3, Juha Kangasluoma3, Helmi Keskinen10, Agnieszka Kupc11, Theo Kurtén3, Alexander N. Kvashin12, Ari Laaksonen10, Ari Laaksonen13, Katrianne Lehtipalo3, Markus Leiminger1, Johannes Leppä13, Ville Loukonen3, Vladimir Makhmutov12, Serge Mathot2, Matthew J. McGrath14, Tuomo Nieminen3, Tuomo Nieminen15, Tinja Olenius3, Antti Onnela2, Tuukka Petäjä3, Francesco Riccobono4, Ilona Riipinen16, Matti P. Rissanen3, Linda Rondo1, Taina Ruuskanen3, Filipe Duarte Santos5, Nina Sarnela3, Simon Schallhart3, R. Schnitzhofer6, John H. Seinfeld8, Mario Simon1, Mikko Sipilä3, Mikko Sipilä15, Yuri Stozhkov12, Frank Stratmann17, António Tomé5, Jasmin Tröstl4, Georgios Tsagkogeorgas17, Petri Vaattovaara10, Yrjö Viisanen13, Annele Virtanen10, Aron Vrtala11, Paul E. Wagner11, Ernest Weingartner4, Heike Wex17, Christina Williamson1, Daniela Wimmer3, Daniela Wimmer1, Penglin Ye7, Taina Yli-Juuti3, Kenneth S. Carslaw9, Markku Kulmala15, Markku Kulmala3, Joachim Curtius1, Urs Baltensperger4, Douglas R. Worsnop, Hanna Vehkamäki3, Jasper Kirkby2, Jasper Kirkby1 
17 Oct 2013-Nature
TL;DR: The results show that, in regions of the atmosphere near amine sources, both amines and sulphur dioxide should be considered when assessing the impact of anthropogenic activities on particle formation.
Abstract: Nucleation of aerosol particles from trace atmospheric vapours is thought to provide up to half of global cloud condensation nuclei(1). Aerosols can cause a net cooling of climate by scattering sun ...

738 citations

Journal ArticleDOI
16 May 2014-Science
TL;DR: It is shown, in experiments performed with the CLOUD (Cosmics Leaving Outdoor Droplets) chamber at CERN, that sulfuric acid and oxidized organic vapors at atmospheric concentrations reproduce particle nucleation rates observed in the lower atmosphere.
Abstract: Atmospheric new-particle formation affects climate and is one of the least understood atmospheric aerosol processes. The complexity and variability of the atmosphere has hindered elucidation of the fundamental mechanism of new-particle formation from gaseous precursors. We show, in experiments performed with the CLOUD (Cosmics Leaving Outdoor Droplets) chamber at CERN, that sulfuric acid and oxidized organic vapors at atmospheric concentrations reproduce particle nucleation rates observed in the lower atmosphere. The experiments reveal a nucleation mechanism involving the formation of clusters containing sulfuric acid and oxidized organic molecules from the very first step. Inclusion of this mechanism in a global aerosol model yields a photochemically and biologically driven seasonal cycle of particle concentrations in the continental boundary layer, in good agreement with observations.

446 citations

Journal ArticleDOI
TL;DR: High-resolution mass spectra of ion clusters observed during new particle formation experiments performed at the Cosmics Leaving Outdoor Droplets chamber at the European Organization for Nuclear Research confirm that oxidized organics are involved in both the formation and growth of particles under ambient conditions.
Abstract: Atmospheric aerosols formed by nucleation of vapors affect radiative forcing and therefore climate. However, the underlying mechanisms of nucleation remain unclear, particularly the involvement of organic compounds. Here, we present high-resolution mass spectra of ion clusters observed during new particle formation experiments performed at the Cosmics Leaving Outdoor Droplets chamber at the European Organization for Nuclear Research. The experiments involved sulfuric acid vapor and different stabilizing species, including ammonia and dimethylamine, as well as oxidation products of pinanediol, a surrogate for organic vapors formed from monoterpenes. A striking resemblance is revealed between the mass spectra from the chamber experiments with oxidized organics and ambient data obtained during new particle formation events at the Hyytiala boreal forest research station. We observe that large oxidized organic compounds, arising from the oxidation of monoterpenes, cluster directly with single sulfuric acid molecules and then form growing clusters of one to three sulfuric acid molecules plus one to four oxidized organics. Most of these organic compounds retain 10 carbon atoms, and some of them are remarkably highly oxidized (oxygen-to-carbon ratios up to 1.2). The average degree of oxygenation of the organic compounds decreases while the clusters are growing. Our measurements therefore connect oxidized organics directly, and in detail, with the very first steps of new particle formation and their growth between 1 and 2 nm in a controlled environment. Thus, they confirm that oxidized organics are involved in both the formation and growth of particles under ambient conditions.

301 citations

Journal ArticleDOI
TL;DR: In this article, the authors assess the importance of new particle formation (NPF) for both the present-day and the pre-industrial atmospheres using a global aerosol model with parametrizations of NPF from previously published CLOUD chamber experiments involving sulfuric acid, ammonia, organic molecules and ions.
Abstract: New particle formation has been estimated to produce around half of cloud-forming particles in the present-day atmosphere, via gas-to-particle conversion. Here we assess the importance of new particle formation (NPF) for both the present-day and the preindustrial atmospheres. We use a global aerosol model with parametrizations of NPF from previously published CLOUD chamber experiments involving sulfuric acid, ammonia, organic molecules, and ions. We find that NPF produces around 67% of cloud condensation nuclei at 0.2% supersaturation (CCN0.2%) at the level of low clouds in the preindustrial atmosphere (estimated uncertainty range 45–84%) and 54% in the present day (estimated uncertainty range 38–66%). Concerning causes, we find that the importance of biogenic volatile organic compounds (BVOCs) in NPF and CCN formation is greater than previously thought. Removing BVOCs and hence all secondary organic aerosol from our model reduces low-cloud-level CCN concentrations at 0.2% supersaturation by 26% in the present-day atmosphere and 41% in the preindustrial. Around three quarters of this reduction is due to the tiny fraction of the oxidation products of BVOCs that have sufficiently low volatility to be involved in NPF and early growth. Furthermore, we estimate that 40% of preindustrial CCN0.2% are formed via ion-induced NPF, compared with 27% in the present day, although we caution that the ion-induced fraction of NPF involving BVOCs is poorly measured at present. Our model suggests that the effect of changes in cosmic ray intensity on CCN is small and unlikely to be comparable to the effect of large variations in natural primary aerosol emissions.

186 citations


Cited by
More filters
Book ChapterDOI
01 Jan 2014
TL;DR: Myhre et al. as discussed by the authors presented the contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) 2013: Anthropogenic and Natural Radiative forcing.
Abstract: This chapter should be cited as: Myhre, G., D. Shindell, F.-M. Bréon, W. Collins, J. Fuglestvedt, J. Huang, D. Koch, J.-F. Lamarque, D. Lee, B. Mendoza, T. Nakajima, A. Robock, G. Stephens, T. Takemura and H. Zhang, 2013: Anthropogenic and Natural Radiative Forcing. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. Coordinating Lead Authors: Gunnar Myhre (Norway), Drew Shindell (USA)

3,684 citations

Journal ArticleDOI
27 Feb 2014-Nature
TL;DR: It is found that a direct pathway leads from several biogenic VOCs, such as monoterpenes, to the formation of large amounts of extremely low-volatility vapours, helping to explain the discrepancy between the observed atmospheric burden of secondary organic aerosol and that reported by many model studies.
Abstract: Forests emit large quantities of volatile organic compounds (VOCs) to the atmosphere. Their condensable oxidation products can form secondary organic aerosol, a significant and ubiquitous component of atmospheric aerosol, which is known to affect the Earth's radiation balance by scattering solar radiation and by acting as cloud condensation nuclei. The quantitative assessment of such climate effects remains hampered by a number of factors, including an incomplete understanding of how biogenic VOCs contribute to the formation of atmospheric secondary organic aerosol. The growth of newly formed particles from sizes of less than three nanometres up to the sizes of cloud condensation nuclei (about one hundred nanometres) in many continental ecosystems requires abundant, essentially non-volatile organic vapours, but the sources and compositions of such vapours remain unknown. Here we investigate the oxidation of VOCs, in particular the terpene α-pinene, under atmospherically relevant conditions in chamber experiments. We find that a direct pathway leads from several biogenic VOCs, such as monoterpenes, to the formation of large amounts of extremely low-volatility vapours. These vapours form at significant mass yield in the gas phase and condense irreversibly onto aerosol surfaces to produce secondary organic aerosol, helping to explain the discrepancy between the observed atmospheric burden of secondary organic aerosol and that reported by many model studies. We further demonstrate how these low-volatility vapours can enhance, or even dominate, the formation and growth of aerosol particles over forested regions, providing a missing link between biogenic VOCs and their conversion to aerosol particles. Our findings could help to improve assessments of biosphere-aerosol-climate feedback mechanisms, and the air quality and climate effects of biogenic emissions generally.

1,340 citations

Journal ArticleDOI
TL;DR: A periodic cycle of PM episodes in Beijing is demonstrated that is governed by meteorological conditions and characterized by two distinct aerosol formation processes of nucleation and growth, but with a small contribution from primary emissions and regional transport of particles.
Abstract: As the world’s second largest economy, China has experienced severe haze pollution, with fine particulate matter (PM) recently reaching unprecedentedly high levels across many cities, and an understanding of the PM formation mechanism is critical in the development of efficient mediation policies to minimize its regional to global impacts. We demonstrate a periodic cycle of PM episodes in Beijing that is governed by meteorological conditions and characterized by two distinct aerosol formation processes of nucleation and growth, but with a small contribution from primary emissions and regional transport of particles. Nucleation consistently precedes a polluted period, producing a high number concentration of nano-sized particles under clean conditions. Accumulation of the particle mass concentration exceeding several hundred micrograms per cubic meter is accompanied by a continuous size growth from the nucleation-mode particles over multiple days to yield numerous larger particles, distinctive from the aerosol formation typically observed in other regions worldwide. The particle compositions in Beijing, on the other hand, exhibit a similarity to those commonly measured in many global areas, consistent with the chemical constituents dominated by secondary aerosol formation. Our results highlight that regulatory controls of gaseous emissions for volatile organic compounds and nitrogen oxides from local transportation and sulfur dioxide from regional industrial sources represent the key steps to reduce the urban PM level in China.

1,291 citations

Journal ArticleDOI
22 Feb 2012-Tellus B
TL;DR: A review of the current knowledge on major categories of primary biological aerosol particles (PBAP): bacteria and archaea, fungal spores and fragments, pollen, viruses, algae and cyanobacteria, biological crusts and lichens and others like plant or animal fragments and detritus is presented in this article.
Abstract: Atmospheric aerosol particles of biological origin are a very diverse group of biological materials and structures, including microorganisms, dispersal units, fragments and excretions of biological organisms. In recent years, the impact of biological aerosol particles on atmospheric processes has been studied with increasing intensity, and a wealth of new information and insights has been gained. This review outlines the current knowledge on major categories of primary biological aerosol particles (PBAP): bacteria and archaea, fungal spores and fragments, pollen, viruses, algae and cyanobacteria, biological crusts and lichens and others like plant or animal fragments and detritus. We give an overview of sampling methods and physical, chemical and biological techniques for PBAP analysis (cultivation, microscopy, DNA/RNA analysis, chemical tracers, optical and mass spectrometry, etc.). Moreover, we address and summarise the current understanding and open questions concerning the influence of PBAP on the atmosphere and climate, i.e. their optical properties and their ability to act as ice nuclei (IN) or cloud condensation nuclei (CCN). We suggest that the following research activities should be pursued in future studies of atmospheric biological aerosol particles: (1) develop efficient and reliable analytical techniques for the identification and quantification of PBAP; (2) apply advanced and standardised techniques to determine the abundance and diversity of PBAP and their seasonal variation at regional and global scales (atmospheric biogeography); (3) determine the emission rates, optical properties, IN and CCN activity of PBAP in field measurements and laboratory experiments; (4) use field and laboratory data to constrain numerical models of atmospheric transport, transformation and climate effects of PBAP. Keywords: primary biological atmospheric aerosol; climate; cloud condensation nuclei; biology; atmospheric ice nuclei (Published: 22 February 2012) Citation: Tellus B 2012, 64 , 15598, DOI: 10.3402/tellusb.v64i0.15598

1,034 citations

Journal ArticleDOI
TL;DR: Air pollutants consist of a complex combination of gases and particulate matter, which is emitted directly into the atmosphere or formed in the atmosphere through gas-to-particle conversion (secondary) (Figure 1).
Abstract: Urban air pollution represents one of the greatest environmental challenges facing mankind in the 21st century. Noticeably, many developing countries, such as China and India, have experienced severe air pollution because of their fast-developing economy and urbanization. Globally, the urbanization trend is projected to continue: 70% of the world population will reside in urban centers by 2050, and there will exist 41 megacities (with more than 10 million inhabitants) by 2030. Air pollutants consist of a complex combination of gases and particulate matter (PM). In particular, fine PM (particles with the aerodynamic diameter smaller than 2.5 μm or PM_(2.5)) profoundly impacts human health, visibility, the ecosystem, the weather, and the climate, and these PM effects are largely dependent on the aerosol properties, including the number concentration, size, and chemical composition. PM is emitted directly into the atmosphere (primary) or formed in the atmosphere through gas-to-particle conversion (secondary) (Figure 1). Also, primary and secondary PM undergoes chemical and physical transformations and is subjected to transport, cloud processing, and removal from the atmosphere.

931 citations