scispace - formally typeset
Search or ask a question
Author

Georgy Köntges

Bio: Georgy Köntges is an academic researcher from University of Freiburg. The author has contributed to research in topics: Paraxial mesoderm & Notochord. The author has an hindex of 1, co-authored 1 publications receiving 165 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: There is bilaterality of the vascular system in the trunk with homotopical grafts between quail and chick embryos, and angioblasts from ventral somite halves are mainly found in ventrolateral blood vessels.
Abstract: We have studied the angiogenic potential of the unsegmented paraxial mesoderm and epithelial somites of the trunk with homotopical grafts between quail and chick embryos. Quail endothelial cells of the grafts were stained with the QH-1 antibody after 1-6 days of reincubation. The unsegmented paraxial mesoderm and all parts of the epithelial somite were found to contain angioblasts which develop into QH-1 positive endothelial cells. These cells are incorporated into the lining of the host's blood vessels such as the perineural vascular plexus and the dorsal branches of the aorta. There is a certain preference as concerns the location of endothelial cells derived from different parts of the somites. Angioblasts from ventral somite halves are mainly found in ventrolateral blood vessels. Those from dorsomedial quadrants form vessels in the dermis of the back, and those from dorsolateral quadrants can be found in the ventrolateral body wall and the wing. With the exception of the dorsal perineural vascular plexus, angioblasts do not cross the median plane of the body. This shows that, although angioblasts migrate extensively, there is bilaterality of the vascular system in the trunk. It remains to be studied whether the notochord plays a role in the establishment of this bilaterality.

168 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The formation and early differentiation of the somites in the avian embryo is reported on and a method for staging somites according to their developmental age is suggested.
Abstract: We report on the formation and early differentiation of the somites in the avian embryo. The somites are derived from the avian embryo. The somites are derived from the mesoderm which, in the body (excluding the head), is subdivided into four compartments: the axial, paraxial, intermediate and lateral plate mesoderm. Somites develop from the paraxial mesoderm and constitute the segmental pattern of the body. They are formed in pairs by epithelialization, first at the cranial end of the paraxial mesoderm, proceeding caudally, while new mesenchyme cells enter the paraxial mesoderm as a consequence of gastrulation. After their formation, which depends upon cell-cell and cell-matrix interactions, the somites impose segmental pattern upon peripheral nerves and vascular primordia. The newly formed somite consists of an epithelial ball of columnar cells enveloping mesenchymal cells within a central cavity, the somitocoel. Each somite is surrounded by extracellular matrix material connecting the somite with adjacent structures. The competence to form skeletal muscle is a unique property of the somites and becomes realized during compartmentalization, under control of signals emanating from surrounding tissues. Compartmentalization is accompanied by altered patterns of expression of Pax genes within the somite. These are believed to be involved in the specification of somite cell lineages. Somites are also regionally specified, giving rise to particular skeletal structures at different axial levels. This axial specification appears to be reflected in Hox gene expression. MyoD is first expressed in the dorsomedial quadrant of the still epithelial somite whose cells are not yet definitely committed. During early maturation, the ventral wall of the somite undergoes an epithelio-mesenchymal transition forming the sclerotome. The sclerotome later becomes subdivided into rostral and caudal halves which are separated laterally by von Ebner's fissure. The lateral part of the caudal half of the sclerotome mainly forms the ribs, neural arches and pedicles of vertebrae, whereas within the lateral part of the rostral half the spinal nerve develops. The medially migrating sclerotomal cells form the peri-notochordal sheath, and later give rise to the vertebral bodies and intervertebral discs. The somitocoel cells also contribute to the sclerotome. The dorsal half of the somite remains epithelial and is referred to as the dermomyotome because it gives rise to the dermis of the back and the skeletal musculature. the cells located within the lateral half of the dermomyotome are the precursors of the muscles of the hypaxial domain of the body, whereas those in the medial half are precursors of the epaxial (back) muscles.(ABSTRACT TRUNCATED AT 400 WORDS)

791 citations

Journal ArticleDOI
TL;DR: Embryological and genetic studies of mouse, bird, zebrafish, and frog embryos are providing new insights into the regulatory functions of the myogenic regulatory factors, MyoD, Myf5, Myogenin, and MRF4, and the transcriptional and signaling mechanisms that control their expression during the specification and differentiation of muscle progenitors.
Abstract: Embryological and genetic studies of mouse, bird, zebrafish, and frog embryos are providing new insights into the regulatory functions of the myogenic regulatory factors, MyoD, Myf5, Myogenin, and MRF4, and the transcriptional and signaling mechanisms that control their expression during the specification and differentiation of muscle progenitors. Myf5 and MyoD genes have genetically redundant, but developmentally distinct regulatory functions in the specification and the differentiation of somite and head muscle progenitor lineages. Myogenin and MRF4 have later functions in muscle differentiation, and Pax and Hox genes coordinate the migration and specification of somite progenitors at sites of hypaxial and limb muscle formation in the embryo body. Transcription enhancers that control Myf5 and MyoD activation in muscle progenitors and maintain their expression during muscle differentiation have been identified by transgenic analysis. In epaxial, hypaxial, limb, and head muscle progenitors, Myf5 is controlled by lineage-specific transcription enhancers, providing evidence that multiple mechanisms control progenitor specification at different sites of myogenesis in the embryo. Developmental signaling ligands and their signal transduction effectors function both interactively and independently to control Myf5 and MyoD activation in muscle progenitor lineages, likely through direct regulation of their transcription enhancers. Future investigations of the signaling and transcriptional mechanisms that control Myf5 and MyoD in the muscle progenitor lineages of different vertebrate embryos can be expected to provide a detailed understanding of the developmental and evolutionary mechanisms for anatomical muscles formation in vertebrates. This knowledge will be a foundation for development of stem cell therapies to repair diseased and damaged muscles.

563 citations

Journal ArticleDOI
TL;DR: The results lead to the conclusion that the embryo becomes vascularized by endothelial precursors from two distinct regions, splanchnopleural mesoderm and paraxial mesodern, and the territories respectively vascularized are complementary.
Abstract: We have shown previously by means of quail/chick transplantations that external and visceral organs, i.e., somatopleural and splanchnopleural derivatives, acquire their endothelial network through different mechanisms, namely immigration (termed angiogenesis) versus in situ emergence of precursors (or vasculogenesis). We have traced the distribution of QH1-positive cells in chick hosts after replacement of the last somites by quail somites (orthotopic grafts) or lateral plate mesoderm (heterotopic grafts). The results lead to the conclusion that the embryo becomes vascularized by endothelial precursors from two distinct regions, splanchnopleural mesoderm and paraxial mesoderm. The territories respectively vascularized are complementary, precursors from the paraxial mesoderm occupy the body wall and kidney, i.e., they settle along with the other paraxial mesoderm derivatives and colonize the somatopleure. The precursors from the two origins have distinct recognition and potentialities properties: endothelial precursors of paraxial origin are barred from vascularizing visceral organs and from integrating into the floor of the aorta, and are never associated with hemopoiesis; splanchnopleural mesoderm grafted in the place of somites, gives off endothelial cells to body wall and kidney but also visceral organs. It gives rise to hemopoietic precursors in addition to endothelial cells.

411 citations

Journal ArticleDOI
TL;DR: It is found that during normal development the first angioblasts arise laterally in the mesoderm and then migrate medially to form the primordia of the large axial vessels, the dorsal aorta (axial artery) and the axial vein, which may provide cues for their formation.

314 citations

Journal ArticleDOI
TL;DR: Zebrafish ISVs are a tractable system for defining the origins and fates of vessels, and for dissecting elements that govern patterns of vessel growth.
Abstract: Little is known about how vascular patterns are generated in the embryo. The vasculature of the zebrafish trunk has an extremely regular pattern. One intersegmental vessel (ISV) sprouts from the aorta, runs between each pair of somites, and connects to the dorsal longitudinal anastomotic vessel (DLAV). We now define the cellular origins, migratory paths and cell fates that generate these metameric vessels of the trunk. Additionally, by a genetic screen we define one gene, out of bounds (obd), that constrains this angiogenic growth to a specific path. We have performed lineage analysis, using laser activation of a caged dye and mosaic construction to determine the origin of cells that constitute the ISV. Individual angioblasts destined for the ISVs arise from the lateral posterior mesoderm (LPM), and migrate to the dorsal aorta, from where they migrate between somites to their final position in the ISVs and dorsal longitudinal anastomotic vessel (DLAV). Cells of each ISV leave the aorta only between the ventral regions of two adjacent somites, and migrate dorsally to assume one of three ISV cell fates. Most dorsal is a T-shaped cell, based in the DLAV and branching ventrally; the second constitutes a connecting cell; and the third an inverted T-shaped cell, based in the aorta and branching dorsally. The ISV remains between somites during its ventral course, but changes to run mid-somite dorsally. This suggests that the pattern of ISV growth ventrally and dorsally is guided by different cues. We have also performed an ENU mutagenesis screen of 750 mutagenized genomes and identified one mutation, obd that disrupts this pattern. In obd mutant embryos, ISVs sprout precociously at abnormal sites and migrate anomalously in the vicinity of ventral somite. The dorsal extent of the ISV is less perturbed. Precocious sprouting can be inhibited in a VEGF morphant, but the anomalous site of origin of obd ISVs remains. In mosaic embryos, obd somite causes adjacent wild-type endothelial cells to assume the anomalous ISV pattern of obd embryos. Thus, the launching position of the new sprout and its initial trajectory are directed by inhibitory signals from ventral somites. Zebrafish ISVs are a tractable system for defining the origins and fates of vessels, and for dissecting elements that govern patterns of vessel growth.

310 citations