scispace - formally typeset
Search or ask a question
Author

Geovani Quijas

Bio: Geovani Quijas is an academic researcher. The author has contributed to research in topics: Chemistry & Epidermis (zoology). The author has co-authored 1 publications.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors show that tetrahexyldecyl ascorbate (THDC) is a poor antioxidant that degrades rapidly when exposed to singlet oxygen.
Abstract: Tetrahexyldecyl Ascorbate (THDC) is an L-ascorbic acid precursor with improved stability and ability to penetrate the epidermis. The stability and transdermal penetration of THDC, however, may be compromised by the oxidant-rich environment of human skin. In this study, we show that THDC is a poor antioxidant that degrades rapidly when exposed to singlet oxygen. This degradation, however, was prevented by combination with acetyl zingerone (AZ) as a stabilizing antioxidant. As a standalone ingredient, THDC led to unexpected activation of type I interferon signaling, but this pro-inflammatory effect was blunted in the presence of AZ. Moreover, the combination of THDC and AZ increased expression of genes associated with phospholipid homeostasis and keratinocyte differentiation, along with repression of MMP1 and MMP7 expression, inhibition of MMP enzyme activity, and increased production of collagen proteins by dermal fibroblasts. Lastly, whereas THDC alone reduced viability of keratinocytes exposed to oxidative stress, this effect was completely abrogated by the addition of AZ to THDC. These results show that AZ is an effective antioxidant stabilizer of THDC and that combination of these products may improve ascorbic acid delivery. This provides a step towards reaching the full potential of ascorbate as an active ingredient in topical preparations.

1 citations

Journal ArticleDOI
TL;DR: It is reported that pure bakusylan exhibits potential for an improved permeation through the stratum corneum, enhances type IV collagen gene expression in organotypic skin substitutes containing both epidermal and dermal layers, and upregulates this protein in adult human dermal fibroblast cultures.

Cited by
More filters
Journal ArticleDOI
TL;DR: In this article , the authors chronicle the multiple properties by which acetyl zingerone (AZ) as a skincare ingredient can benefit skin (1) by helping manage overproduction of reactive oxygen species (ROS) through multiple routes as an antioxidant, physical quencher and selective chelator, (2) by fortifying protection after UV exposure ends to prevent the type of epidermal DNA damage that correlates with development of skin cancer, (3) by modulating matrisome activity and nurturing the integrity of the extracellular matrix (ECM) within the dermis and (4) through its proficient ability to neutralize singlet oxygen, by stabilizing the ascorbic acid precursor tetrahexyldecyl ascorbiate (THDC) in the dermal microenvironment.
Abstract: The cumulative damage skin sustains from exposure to environmental stressors throughout life exerts significant effects on skin aging and cancer development. One of the main ways by which environmental stressors mediate their effects within skin is through induction of reactive oxygen species (ROS). In this review, we chronicle the multiple properties by which acetyl zingerone (AZ) as a skincare ingredient can benefit skin (1) by helping manage overproduction of ROS through multiple routes as an antioxidant, physical quencher and selective chelator, (2) by fortifying protection after UV exposure ends to prevent the type of epidermal DNA damage that correlates with development of skin cancer, (3) by modulating matrisome activity and nurturing the integrity of the extracellular matrix (ECM) within the dermis and (4) through its proficient ability to neutralize singlet oxygen, by stabilizing the ascorbic acid precursor tetrahexyldecyl ascorbate (THDC) in the dermal microenvironment. This activity improves THDC bioavailability and may blunt pro-inflammatory effects of THDC, such as activation of type I interferon signaling. Moreover, AZ is photostable and can sustain its properties during UV exposure, in contrast to α-tocopherol. All these properties of AZ translate into measurable clinical benefits to improve the visual appearance of photoaged facial skin and to strengthen the skin’s own defenses against sun damage.