scispace - formally typeset
Search or ask a question
Author

Gerald Cohen

Other affiliations: University of York
Bio: Gerald Cohen is an academic researcher from Columbia University. The author has contributed to research in topics: Hydrogen peroxide & Catalase. The author has an hindex of 24, co-authored 35 publications receiving 4658 citations. Previous affiliations of Gerald Cohen include University of York.

Papers
More filters
Journal ArticleDOI
TL;DR: The results point to a reaction between H2O2 and O2- (Haber-Weiss reaction) as a major source of the ·OH radicals and to a combined action of blocking ·OH formation as well as accelerating its removal.

896 citations

Journal ArticleDOI
TL;DR: It was possible to conclude that, in the tissue slice system, an experimentally observed release was real, whereas a releasing action evoked an apparent inhibition of uptake equal in magnitude to the releasing action.

473 citations

Journal ArticleDOI
27 Mar 1970-Science
TL;DR: Condensation reactions occurred in cow adrenal glands perfused with dilute aldehyde solutions at 37�C to form 1,2,3,4-tetrahydroiso-quinoline alkaloids, which could play a role in altering an individual's behavior during and after the ingestion of alcohol.
Abstract: Epinephrine and norepinephrine condensed with acetaldehyde or with formaldehyde in dilute aqueous solution at neutral pH and room temperature to form 1,2,3,4-tetrahydroiso-quinoline alkaloids. Similar condensation reactions occurred in cow adrenal glands perfused with dilute aldehyde solutions at 37 degrees C. Biosynthesis of these alkaloids in vivo could play a role in altering an individual's behavior during and after the ingestion of alcohol.

434 citations

Journal ArticleDOI
03 Aug 1973-Science
TL;DR: Observations demonstrate the formation of the superoxide radical during the autoxidation process, which may be relevant to the mechanism of adrenergic nerve terminal degeneration caused by 6-hydroxydopamine.
Abstract: Superoxide dismutase inhibited the autoxidation of 6-hydroxydopamine as measured by the rate of formation of a quinone and the rate of oxygen consumption. These observations demonstrate the formation of the superoxide radical during the autoxidation process. This finding may be relevant to the mechanism of adrenergic nerve terminal degeneration caused by 6-hydroxydopamine.

260 citations


Cited by
More filters
Book ChapterDOI
TL;DR: In this article, the catalytic activity of catalase has been investigated using ultraviolet (UV) spectrophotometry and Titrimetric methods, which is suitable for comparative studies for large series of measurements.
Abstract: Publisher Summary Catalase exerts a dual function: (1) decomposition of H 2 O 2 to give H 2 O and O 2 (catalytic activity) and (2) oxidation of H donors, for example, methanol, ethanol, formic acid, phenols, with the consumption of 1 mol of peroxide (peroxide activity) The kinetics of catalase does not obey the normal pattern Measurements of enzyme activity at substrate saturation or determination of the K s is therefore impossible In contrast to reactions proceeding at substrate saturation, the enzymic decomposition of H 2 O 2 is a first-order reaction, the rate of which is always proportional to the peroxide concentration present Consequently, to avoid a rapid decrease in the initial rate of the reaction, the assay must be carried out with relatively low concentrations of H 2 O 2 (about 001 M) This chapter discusses the catalytic activity of catalase The method of choice for biological material, however, is ultraviolet (UV) spectrophotometry Titrimetric methods are suitable for comparative studies For large series of measurements, there are either simple screening tests, which give a quick indication of the approximative catalase activity, or automated methods

20,238 citations

Journal ArticleDOI
TL;DR: Glutathione peroxidase activity is found to be associated with a relatively stable, nondialyzable, heat-labile, intracellular component which is separable from hemoglobin, by gel filtration and ammonium sulfate precipitation.

10,439 citations

Journal ArticleDOI
TL;DR: The autoxidation of pyrogallol was investigated in the presence of EDTA in the pH range 7.9–10.6, indicating an almost total dependence on the participation of the superoxide anion radical, O2·−, in the reaction.
Abstract: The autoxidation of pyrogallol was investigated in the presence of EDTA in the pH range 7.9–10.6. The rate of autoxidation increases with increasing pH. At pH 7.9 the reaction is inhibited to 99% by superoxide dismutase, indicating an almost total dependence on the participation of the superoxide anion radical, O2·−, in the reaction. Up to pH 9.1 the reaction is still inhibited to over 90% by superoxide dismutase, but at higher alkalinity, O2·− -independent mechanisms rapidly become dominant. Catalase has no effect on the autoxidation but decreases the oxygen consumption by half, showing that H2O2 is the stable product of oxygen and that H2O2 is not involved in the autoxidation mechanism. A simple and rapid method for the assay of superoxide dismutase is described, based on the ability of the enzyme to inhibit the autoxidation of pyrogallol. A plausible explanation is given for the non-competitive part of the inhibition of catechol O-methyltransferase brought about by pyrogallol.

9,030 citations

Journal ArticleDOI
29 Oct 1993-Science
TL;DR: Two broad mechanisms--oxidative stress and excessive activation of glutamate receptors--are converging and represent sequential as well as interacting processes that provide a final common pathway for cell vulnerability in the brain.
Abstract: There is an increasing amount of experimental evidence that oxidative stress is a causal, or at least an ancillary, factor in the neuropathology of several adult neurodegenerative disorders, as well as in stroke, trauma, and seizures. At the same time, excessive or persistent activation of glutamate-gated ion channels may cause neuronal degeneration in these same conditions. Glutamate and related acidic amino acids are thought to be the major excitatory neurotransmitters in brain and may be utilized by 40 percent of the synapses. Thus, two broad mechanisms--oxidative stress and excessive activation of glutamate receptors--are converging and represent sequential as well as interacting processes that provide a final common pathway for cell vulnerability in the brain. The broad distribution in brain of the processes regulating oxidative stress and mediating glutamatergic neurotransmission may explain the wide range of disorders in which both have been implicated. Yet differential expression of components of the processes in particular neuronal systems may account for selective neurodegeneration in certain disorders.

3,844 citations

Journal ArticleDOI
Irwin Fridovich1
TL;DR: O2- oxidizes the [4Fe-4S] clusters of dehydratases, such as aconitase, causing-inactivation and release of Fe(II), which may then reduce H2O2 to OH- +OH..
Abstract: O2- oxidizes the [4Fe-4S] clusters of dehydratases, such as aconitase, causing-inactivation and release of Fe(II), which may then reduce H2O2 to OH- +OH.. SODs inhibit such HO. production by scavengingO2-, but Cu, ZnSODs, by virtue of a nonspecific peroxidase activity, may peroxidize spin trapping agents and thus give the appearance of catalyzing OH. production from H2O2. There is a glycosylated, tetrameric Cu, ZnSOD in the extracellular space that binds to acidic glycosamino-glycans. It minimizes the reaction of O2- with NO. E. coli, and other gram negative microorganisms, contain a periplasmic Cu, ZnSOD that may serve to protect against extracellular O2-. Mn(III) complexes of multidentate macrocyclic nitrogenous ligands catalyze the dismutation of O2- and are being explored as potential pharmaceutical agents. SOD-null mutants have been prepared to reveal the biological effects of O2-. SodA, sodB E. coli exhibit dioxygen-dependent auxotrophies and enhanced mutagenesis, reflecting O2(-)-sensitive biosynthetic pathways and DNA damage. Yeast, lacking either Cu, ZnSOD or MnSOD, are oxygen intolerant, and the double mutant was hypermutable and defective in sporulation and exhibited requirements for methionine and lysine. A Cu, ZnSOD-null Drosophila exhibited a shortened lifespan.

3,298 citations