scispace - formally typeset
Search or ask a question
Author

Gerald Hochleitner

Bio: Gerald Hochleitner is an academic researcher from CSL Behring. The author has contributed to research in topics: Thromboelastometry & Thrombelastography. The author has an hindex of 11, co-authored 14 publications receiving 1099 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: TEM-guided haemostatic therapy with fibrinogen concentrate and PCC reduced the exposure of trauma patients to allogeneic blood products.
Abstract: Introduction Thromboelastometry (TEM)-guided haemostatic therapy with fibrinogen concentrate and prothrombin complex concentrate (PCC) in trauma patients may reduce the need for transfusion of red blood cells (RBC) or platelet concentrate, compared with fresh frozen plasma (FFP)-based haemostatic therapy.

371 citations

Journal ArticleDOI
TL;DR: Hemostatic therapy with fibrinogen concentrate in patients undergoing aortic surgery significantly reduced the transfusion of allogeneic blood products.
Abstract: BACKGROUND Fibrinogen is suggested to play an important role in managing major bleeding. However, clinical evidence regarding the effect of fibrinogen concentrate (derived from human plasma) on transfusion is limited. The authors assessed whether fibrinogen concentrate can reduce blood transfusion when given as intraoperative, targeted, first-line hemostatic therapy in bleeding patients undergoing aortic replacement surgery. METHODS In this single-center, prospective, placebo-controlled, double-blind study, patients aged 18 yr or older undergoing elective thoracic or thoracoabdominal aortic replacement surgery involving cardiopulmonary bypass were randomized to fibrinogen concentrate or placebo, administered intraoperatively. Study medication was given if patients had clinically relevant coagulopathic bleeding immediately after removal from cardiopulmonary bypass and completion of surgical hemostasis. Dosing was individualized using the fibrin-based thromboelastometry test. If bleeding continued, a standardized transfusion protocol was followed. RESULTS Twenty-nine patients in the fibrinogen concentrate group and 32 patients in the placebo group were eligible for the efficacy analysis. During the first 24 h after the administration of study medication, patients in the fibrinogen concentrate group received fewer allogeneic blood components than did patients in the placebo group (median, 2 vs. 13 U; P < 0.001; primary endpoint). Total avoidance of transfusion was achieved in 13 (45%) of 29 patients in the fibrinogen concentrate group, whereas 32 (100%) of 32 patients in the placebo group received transfusion (P < 0.001). There was no observed safety concern with using fibrinogen concentrate during aortic surgery. CONCLUSIONS Hemostatic therapy with fibrinogen concentrate in patients undergoing aortic surgery significantly reduced the transfusion of allogeneic blood products. Larger multicenter studies are necessary to confirm the role of fibrinogen concentrate in the management of perioperative bleeding in patients with life-threatening coagulopathy.

253 citations

Journal ArticleDOI
TL;DR: The basis for why this calculation should be based on clot elasticity as opposed to clot amplitude is reviewed, which can provide a valuable insight into platelet deficiency in emergency bleeding.
Abstract: The viscoelastic properties of blood clot have been studied most commonly using thrombelastography (TEG) and thromboelastometry (ROTEM). ROTEM-based bleeding treatment algorithms recommend administering platelets to patients with low EXTEM clot strength (e.g., clot amplitude at 10 minutes [A10] <40 mm) once clot strength of the ROTEM® fibrin-based test (FIBTEM) is corrected. Algorithms based on TEG typically use a low value of maximum amplitude (e.g., <50 mm) as a trigger for administering platelets. However, this parameter reflects the contributions of various blood components to the clot, including platelets and fibrin/fibrinogen. The platelet component of clot strength may provide a more sensitive indication of platelet deficiency than clot amplitude from a whole blood TEG or ROTEM® assay. The platelet component of the formed clot is derived from the results of TEG/ROTEM® tests performed with and without platelet inhibition. In this article, we review the basis for why this calculation should be based on clot elasticity (e.g., the E parameter with TEG and the CE parameter with ROTEM®) as opposed to clot amplitude (e.g., the A parameter with TEG or ROTEM®). This is because clot elasticity, unlike clot amplitude, reflects the force with which the blood clot resists rotation within the device, and the relationship between clot amplitude (variable X) and clot elasticity (variable Y) is nonlinear. A specific increment of X (ΔX) will be associated with different increments of Y (ΔY), depending on the initial value of X. When calculated correctly, using clot elasticity data, the platelet component of the clot can provide a valuable insight into platelet deficiency in emergency bleeding.

107 citations

Journal ArticleDOI
TL;DR: This study compared different fibrinogen concentration measurement methods with maximum clot firmness (MCF) of the fibr in clot, assessed by thromboelastometry (FIBTEM), in 33 cardiovascular surgery patients receiving fibrInogen concentrate for hemostatic therapy.

103 citations

Journal ArticleDOI
TL;DR: Differences when measuring fibrin-based clotting via the FF and FIBTEM assays on the TEG® and ROTEM® devices demonstrate that point-of-care targeted correction of fibrIn- based clotting may be influenced by the assay and device used.
Abstract: BACKGROUND: Fibrin-based clot firmness is measured as maximum amplitude (MA) in the functional fibrinogen (FF) thrombelastographic assay and maximum clot firmness (MCF) in the FIBTEM thromboelastometric assay. Differences between the assays/devices may be clinically significant. Our objective was to compare clot firmness parameters through standard (FF on a thrombelastography device [TEG®]; FIBTEM on a thromboelastometry device [ROTEM®]) and crossover (FF on ROTEM®; FIBTEM on TEG®) analyses. METHODS: Whole-blood samples from healthy volunteers were subjected to thrombelastography and thromboelastometry analyses. Samples were investigated native and following stepwise dilution with sodium chloride solution (20%, 40%, and 60% dilution). Samples were also assessed after in vitro addition of medications (heparin, protamine, tranexamic acid) and 50% dilution with hydroxyethyl starch, gelatin, sodium chloride, and albumin. RESULTS: FF produced higher values than FIBTEM, regardless of the device, and TEG® produced higher values than ROTEM®, regardless of the assay. With all added medications except heparin 400 U/kg bodyweight, FF MA remained significantly higher (P 50%. CONCLUSIONS: These results demonstrate differences when measuring fibrin-based clotting via the FF and FIBTEM assays on the TEG® and ROTEM® devices. Point-of-care targeted correction of fibrin-based clotting may be influenced by the assay and device used. For the FF assay, data are lacking.

101 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The guideline now recommends that patients be transferred directly to an appropriate trauma treatment centre and encourages use of a restricted volume replacement strategy during initial resuscitation, and may also serve as a basis for local implementation.
Abstract: Severe trauma continues to represent a global public health issue and mortality and morbidity in trauma patients remains substantial. A number of initiatives have aimed to provide guidance on the management of trauma patients. This document focuses on the management of major bleeding and coagulopathy following trauma and encourages adaptation of the guiding principles to each local situation and implementation within each institution. The pan-European, multidisciplinary Task Force for Advanced Bleeding Care in Trauma was founded in 2004 and included representatives of six relevant European professional societies. The group used a structured, evidence-based consensus approach to address scientific queries that served as the basis for each recommendation and supporting rationale. Expert opinion and current clinical practice were also considered, particularly in areas in which randomised clinical trials have not or cannot be performed. Existing recommendations were reconsidered and revised based on new scientific evidence and observed shifts in clinical practice; new recommendations were formulated to reflect current clinical concerns and areas in which new research data have been generated. This guideline represents the fourth edition of a document first published in 2007 and updated in 2010 and 2013. The guideline now recommends that patients be transferred directly to an appropriate trauma treatment centre and encourages use of a restricted volume replacement strategy during initial resuscitation. Best-practice use of blood products during further resuscitation continues to evolve and should be guided by a goal-directed strategy. The identification and management of patients pre-treated with anticoagulant agents continues to pose a real challenge, despite accumulating experience and awareness. The present guideline should be viewed as an educational aid to improve and standardise the care of the bleeding trauma patients across Europe and beyond. This document may also serve as a basis for local implementation. Furthermore, local quality and safety management systems need to be established to specifically assess key measures of bleeding control and outcome. A multidisciplinary approach and adherence to evidence-based guidance are key to improving patient outcomes. The implementation of locally adapted treatment algorithms should strive to achieve measureable improvements in patient outcome.

1,247 citations

Journal ArticleDOI
TL;DR: These guidelines are intended to provide an overview of current knowledge on the subject with an assessment of the quality of the evidence in order to allow anaesthetists throughout Europe to integrate this knowledge into daily patient care wherever possible.
Abstract: The aims of severe perioperative bleeding management are three-fold. First, preoperative identification by anamesis and laboratory testing of those patients for whom the perioperative bleeding risk may be increased. Second, implementation of strategies for correcting preoperative anaemia and stabilisation of the macro- and microcirculations in order to optimise the patient’s tolerance to bleeding. Third, targeted procoagulant interventions to reduce the amount of bleeding, morbidity, mortality and costs. The purpose of these guidelines is to provide an overview of current knowledge on the subject with an assessment of the quality of the evidence in order to allow anaesthetists throughout Europe to integrate this knowledge into daily patient care wherever possible. The Guidelines Committee of the European Society of Anaesthesiology (ESA) formed a task force with members of scientific subcommittees and individual expert members of the ESA. Electronic databases were searched without language restrictions from the year 2000 until 2012. These searches produced 20 664 abstracts. Relevant systematic reviews with meta-analyses, randomised controlled trials, cohort studies, case-control studies and cross-sectional surveys were selected. At the suggestion of the ESA Guideline Committee, the Scottish Intercollegiate Guidelines Network (SIGN) grading system was initially used to assess the level of evidence and to grade recommendations. During the process of guideline development, the official position of the ESA changed to favour the Grading of Recommendations Assessment, Development and Evaluation (GRADE) system. This report includes general recommendations as well as specific recommendations in various fields of surgical interventions. The final draft guideline was posted on the ESA website for four weeks and the link was sent to all ESA members. Comments were collated and the guidelines amended as appropriate. When the final draft was complete, the Guidelines Committee and ESA Board ratified the guidelines.

883 citations

Journal ArticleDOI
TL;DR: Key changes encompassed in this version of the guideline include new recommendations on the appropriate use of vasopressors and inotropic agents, and reflect an awareness of the growing number of patients in the population at large treated with antiplatelet agents and/or oral anticoagulants.
Abstract: Introduction: Evidence-based recommendations are needed to guide the acute management of the bleeding trauma patient. When these recommendations are implemented patient outcomes may be improved. Methods: The multidisciplinary Task Force for Advanced Bleeding Care in Trauma was formed in 2005 with the aim of developing a guideline for the management of bleeding following severe injury. This document represents an updated version of the guideline published by the group in 2007 and updated in 2010. Recommendations were formulated using a nominal group process, the Grading of Recommendations Assessment, Development and Evaluation (GRADE) hierarchy of evidence and based on a systematic review of published literature. Results: Key changes encompassed in this version of the guideline include new recommendations on the appropriate use of vasopressors and inotropic agents, and reflect an awareness of the growing number of patients in the population at large treated with antiplatelet agents and/or oral anticoagulants. The current guideline also includes recommendations and a discussion of thromboprophylactic strategies for all patients following traumatic injury. The most significant addition is a new section that discusses the need for every institution to develop, implement and adhere to an evidence-based clinical protocol to manage traumatically injured patients. The remaining recommendations have been re-evaluated and graded based on literature published since the last edition of the guideline. Consideration was also given to changes in clinical practice that have taken place during this time period as a result of both new evidence and changes in the general availability of relevant agents and technologies. Conclusions: A comprehensive, multidisciplinary approach to trauma care and mechanisms with which to ensure that established protocols are consistently implemented will ensure a uniform and high standard of care across Europe and beyond.

800 citations

01 Jan 2010
TL;DR: In this article, the authors presented an updated version of the guideline published by the Task Force for Advanced Bleeding Care in Trauma and updated in 2010, which included new recommendations on the appropriate use of vasopressors and inotropic agents.
Abstract: IntroductionEvidence-based recommendations are needed to guide the acute management of the bleeding trauma patient. When these recommendations are implemented patient outcomes may be improved.MethodsThe multidisciplinary Task Force for Advanced Bleeding Care in Trauma was formed in 2005 with the aim of developing a guideline for the management of bleeding following severe injury. This document represents an updated version of the guideline published by the group in 2007 and updated in 2010. Recommendations were formulated using a nominal group process, the Grading of Recommendations Assessment, Development and Evaluation (GRADE) hierarchy of evidence and based on a systematic review of published literature.ResultsKey changes encompassed in this version of the guideline include new recommendations on the appropriate use of vasopressors and inotropic agents, and reflect an awareness of the growing number of patients in the population at large treated with antiplatelet agents and/or oral anticoagulants. The current guideline also includes recommendations and a discussion of thromboprophylactic strategies for all patients following traumatic injury. The most significant addition is a new section that discusses the need for every institution to develop, implement and adhere to an evidence-based clinical protocol to manage traumatically injured patients. The remaining recommendations have been re-evaluated and graded based on literature published since the last edition of the guideline. Consideration was also given to changes in clinical practice that have taken place during this time period as a result of both new evidence and changes in the general availability of relevant agents and technologies.ConclusionsA comprehensive, multidisciplinary approach to trauma care and mechanisms with which to ensure that established protocols are consistently implemented will ensure a uniform and high standard of care across Europe and beyond.http://ccforum.com/content/17/4/442

797 citations

Journal ArticleDOI
TL;DR: Rotational thromboelastometry (ROTEM) and TEG analysis is being incorporated in vertical algorithms to diagnose and treat bleeding in high‐risk populations such as those undergoing cardiac surgery or suffering from blunt trauma.
Abstract: Initially described in 1948 by Hertert thromboelastography (TEG) provides a real-time assessment of viscoelastic clot strength in whole blood. Rotational thromboelastometry (ROTEM) evolved from TEG technology and both devices generate output by transducing changes in the viscoelastic strength of a small sample of clotting blood (300 µl) to which a constant rotational force is applied. These point of care devices allow visual assessment of blood coagulation from clot formation, through propagation, and stabilization, until clot dissolution. Computer analysis of the output allows sophisticated clot formation/dissolution kinetics and clot strength data to be generated. Activation of clot formation can be initiated with both intrinsic (kaolin, ellagic acid) and extrinsic (tissue factor) activators. In addition, the independent contributions of platelets and fibrinogen to final clot strength can be assessed using added platelet inhibitors (abciximab and cytochalasin D). Increasingly, ROTEM and TEG analysis is being incorporated in vertical algorithms to diagnose and treat bleeding in high-risk populations such as those undergoing cardiac surgery or suffering from blunt trauma. Some evidence suggests these algorithms might reduce transfusions, but further study is needed to assess patient outcomes.

474 citations