scispace - formally typeset
Search or ask a question
Author

Gerald Mayr

Bio: Gerald Mayr is an academic researcher from American Museum of Natural History. The author has contributed to research in topics: Sister group & Tarsometatarsus. The author has an hindex of 39, co-authored 263 publications receiving 6371 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The calibration results suggest that Neoaves, after an initial split from Galloanseres in Mid-Cretaceous, diversified around or soon after the K/T boundary, and show that there is no solid molecular evidence for an extensive pre-Tertiary radiation of Neoaves.
Abstract: Patterns of diversification and timing of evolution within Neoaves, which includes almost 95% of all bird species, are virtually unknown. On the other hand, molecular data consistently indicate a Cretaceous origin of many neoavian lineages and the fossil record seems to support an Early Tertiary diversification. Here, we present the first well-resolved molecular phylogeny for Neoaves, together with divergence time estimates calibrated with a large number of stratigraphically and phylogenetically well-documented fossils. Our study defines several well-supported clades within Neoaves. The calibration results suggest that Neoaves, after an initial split from Galloanseres in Mid-Cretaceous, diversified around or soon after the K/T boundary. Our results thus do not contradict palaeontological data and show that there is no solid molecular evidence for an extensive pre-Tertiary radiation of Neoaves.

631 citations

Book
16 Apr 2009

424 citations

Journal ArticleDOI
TL;DR: A broad array of morphological characters (including both cranial and postcranial characters) are analyzed for an ingroup densely sampling Neornithes, with crown clade outgroups used to polarize these characters.

237 citations

Journal ArticleDOI
TL;DR: The phylogenetic position of Paleogene birds indicates that diversification of the crown‐groups of modern avian‘families’ did not take place before the Oligocene, irrespective of their relative position within Neornithes (crown‐group birds).
Abstract: The Paleogene (Paleocene–Oligocene) fossil record of birds in Europe is reviewed and recent and fossil taxa are placed into a phylogenetic framework, based on published cladistic analyses. The pre-Oligocene European avifauna is characterized by the complete absence of passeriform birds, which today are the most diverse and abundant avian taxon. Representatives of small non-passeriform perching birds thus probably had similar ecological niches before the Oligocene to those filled by modern passerines. The occurrence of passerines towards the Lower Oligocene appears to have had a major impact on these birds, and the surviving crown-group members of many small arboreal Eocene taxa show highly specialized feeding strategies not found or rare in passeriform birds. It is detailed that no crown-group members of modern ‘families ’ are known from preOligocene deposits of Europe, or anywhere else. The phylogenetic position of Paleogene birds thus indicates that diversification of the crown-groups of modern avian ‘families ’ did not take place before the Oligocene, irrespective of their relative position within Neornithes (crown-group birds). The Paleogene fossil record of birds does not even support crown-group diversification of Galliformes, one of the most basal taxa of neognathous birds, before the Oligocene, and recent molecular studies that dated diversification of galliform crown-group taxa into the Middle Cretaceous are shown to be based on an incorrect interpretation of the fossil taxa used for molecular clock calibrations. Several taxa that occur in the Paleogene of Europe have a very different distribution than their closest extant relatives. The modern survivors of these Paleogene lineages are not evenly distributed over the continents, and especially the great number of taxa that are today restricted to South and Central America is noteworthy. The occurrence of stem-lineage representatives of many taxa that today have a restricted Southern Hemisphere distribution conflicts with recent hypotheses on a Cretaceous vicariant origin of these taxa, which were deduced from the geographical distribution of the basal crown-group members.

175 citations

Journal ArticleDOI
02 Dec 2005-Science
TL;DR: A nearly complete skeleton of Archaeopteryx with excellent bone preservation shows that the osteology of the urvogel is similar to that of nonavian theropod dinosaurs and confirms the presence of a hyperextendible second toe as in dromaeosaurs and troodontids.
Abstract: A nearly complete skeleton of Archaeopteryx with excellent bone preservation shows that the osteology of the urvogel is similar to that of nonavian theropod dinosaurs. The new specimen confirms the presence of a hyperextendible second toe as in dromaeosaurs and troodontids. Archaeopteryx had a plesiomorphic tetraradiate palatine bone and no fully reversed first toe. These observations provide further evidence for the theropod ancestry of birds. In addition, the presence of a hyperextendible second toe blurs the distinction of archaeopterygids from basal deinonychosaurs (troodontids and dromaeosaurs) and challenges the monophyly of Aves.

130 citations


Cited by
More filters
Journal ArticleDOI
27 Jun 2008-Science
TL;DR: This study examined ∼32 kilobases of aligned nuclear DNA sequences from 19 independent loci for 169 species, representing all major extant groups, and recovered a robust phylogeny from a genome-wide signal supported by multiple analytical methods.
Abstract: Deep avian evolutionary relationships have been difficult to resolve as a result of a putative explosive radiation. Our study examined ∼32 kilobases of aligned nuclear DNA sequences from 19 independent loci for 169 species, representing all major extant groups, and recovered a robust phylogeny from a genome-wide signal supported by multiple analytical methods. We documented well-supported, previously unrecognized interordinal relationships (such as a sister relationship between passerines and parrots) and corroborated previously contentious groupings (such as flamingos and grebes). Our conclusions challenge current classifications and alter our understanding of trait evolution; for example, some diurnal birds evolved from nocturnal ancestors. Our results provide a valuable resource for phylogenetic and comparative studies in birds.

1,833 citations

01 Jan 1944
TL;DR: The only previously known species of Myrsidea from bulbuls, M. warwicki ex Ixos philippinus, is redescribed and sixteen new species are described; they and their type hosts are described.
Abstract: We redescribe the only previously known species of Myrsidea from bulbuls, M. pycnonoti Eichler. Sixteen new species are described; they and their type hosts are: M. phillipsi ex Pycnonotus goiavier goiavier (Scopoli), M. gieferi ex P. goiavier suluensis Mearns, M. kulpai ex P. flavescens Blyth, M. finlaysoni ex P. finlaysoni Strickland, M. kathleenae ex P. cafer (L.), M. warwicki ex Ixos philippinus (J. R. Forster), M. mcclurei ex Microscelis amaurotis (Temminck), M. zeylanici ex P. zeylanicus (Gmelin), M. plumosi ex P. plumosus Blyth, M. eutiloti ex P. eutilotus (Jardine and Selby), M. adamsae ex P. urostictus (Salvadori), M. ochracei ex Criniger ochraceus F. Moore, M. borbonici ex Hypsipetes borbonicus (J. R. Forster), M. johnsoni ex P. atriceps (Temminck), M. palmai ex C. ochraceus, and M. claytoni ex P. eutilotus. A key is provided for the identification of these 17 species.

1,756 citations

19 Nov 2012

1,653 citations

Journal ArticleDOI
Erich D. Jarvis1, Siavash Mirarab2, Andre J. Aberer3, Bo Li4, Bo Li5, Bo Li6, Peter Houde7, Cai Li4, Cai Li5, Simon Y. W. Ho8, Brant C. Faircloth9, Benoit Nabholz, Jason T. Howard1, Alexander Suh10, Claudia C. Weber10, Rute R. da Fonseca11, Jianwen Li, Fang Zhang Zhang, Hui Li, Long Zhou, Nitish Narula12, Nitish Narula7, Liang Liu13, Ganesh Ganapathy1, Bastien Boussau, Shamsuzzoha Bayzid2, Volodymyr Zavidovych1, Sankar Subramanian14, Toni Gabaldón15, Salvador Capella-Gutierrez, Jaime Huerta-Cepas, Bhanu Rekepalli16, Bhanu Rekepalli17, Kasper Munch18, Mikkel H. Schierup18, Bent E. K. Lindow11, Wesley C. Warren19, David A. Ray, Richard E. Green20, Michael William Bruford21, Xiangjiang Zhan22, Xiangjiang Zhan21, Andrew Dixon, Shengbin Li6, Ning Li23, Yinhua Huang23, Elizabeth P. Derryberry24, Elizabeth P. Derryberry25, Mads F. Bertelsen26, Frederick H. Sheldon25, Robb T. Brumfield25, Claudio V. Mello27, Claudio V. Mello28, Peter V. Lovell28, Morgan Wirthlin28, Maria Paula Cruz Schneider27, Francisco Prosdocimi27, José Alfredo Samaniego11, Amhed Missael Vargas Velazquez11, Alonzo Alfaro-Núñez11, Paula F. Campos11, Bent O. Petersen29, Thomas Sicheritz-Pontén29, An Pas, Thomas L. Bailey, R. Paul Scofield30, Michael Bunce31, David M. Lambert14, Qi Zhou, Polina L. Perelman32, Amy C. Driskell33, Beth Shapiro20, Zijun Xiong, Yongli Zeng, Shiping Liu, Zhenyu Li, Binghang Liu, Kui Wu, Jin Xiao, Xiong Yinqi, Quiemei Zheng, Yong Zhang, Huanming Yang, Jian Wang, Linnéa Smeds10, Frank E. Rheindt34, Michael J. Braun35, Jon Fjeldså11, Ludovic Orlando11, F. Keith Barker5, Knud A. Jønsson5, Warren E. Johnson33, Klaus-Peter Koepfli33, Stephen J. O'Brien36, David Haussler, Oliver A. Ryder, Carsten Rahbek5, Eske Willerslev11, Gary R. Graves5, Gary R. Graves33, Travis C. Glenn13, John E. McCormack37, Dave Burt38, Hans Ellegren10, Per Alström, Scott V. Edwards39, Alexandros Stamatakis3, David P. Mindell40, Joel Cracraft5, Edward L. Braun41, Tandy Warnow2, Tandy Warnow42, Wang Jun, M. Thomas P. Gilbert5, M. Thomas P. Gilbert31, Guojie Zhang4, Guojie Zhang11 
12 Dec 2014-Science
TL;DR: A genome-scale phylogenetic analysis of 48 species representing all orders of Neoaves recovered a highly resolved tree that confirms previously controversial sister or close relationships and identifies the first divergence in Neoaves, two groups the authors named Passerea and Columbea.
Abstract: To better determine the history of modern birds, we performed a genome-scale phylogenetic analysis of 48 species representing all orders of Neoaves using phylogenomic methods created to handle genome-scale data. We recovered a highly resolved tree that confirms previously controversial sister or close relationships. We identified the first divergence in Neoaves, two groups we named Passerea and Columbea, representing independent lineages of diverse and convergently evolved land and water bird species. Among Passerea, we infer the common ancestor of core landbirds to have been an apex predator and confirm independent gains of vocal learning. Among Columbea, we identify pigeons and flamingoes as belonging to sister clades. Even with whole genomes, some of the earliest branches in Neoaves proved challenging to resolve, which was best explained by massive protein-coding sequence convergence and high levels of incomplete lineage sorting that occurred during a rapid radiation after the Cretaceous-Paleogene mass extinction event about 66 million years ago.

1,624 citations

Journal ArticleDOI
22 Oct 2015-Nature
TL;DR: The results of the divergence time analyses are congruent with the palaeontological record, supporting a major radiation of crown birds in the wake of the Cretaceous–Palaeogene (K–Pg) mass extinction.
Abstract: Although reconstruction of the phylogeny of living birds has progressed tremendously in the last decade, the evolutionary history of Neoaves--a clade that encompasses nearly all living bird species--remains the greatest unresolved challenge in dinosaur systematics. Here we investigate avian phylogeny with an unprecedented scale of data: >390,000 bases of genomic sequence data from each of 198 species of living birds, representing all major avian lineages, and two crocodilian outgroups. Sequence data were collected using anchored hybrid enrichment, yielding 259 nuclear loci with an average length of 1,523 bases for a total data set of over 7.8 × 10(7) bases. Bayesian and maximum likelihood analyses yielded highly supported and nearly identical phylogenetic trees for all major avian lineages. Five major clades form successive sister groups to the rest of Neoaves: (1) a clade including nightjars, other caprimulgiforms, swifts, and hummingbirds; (2) a clade uniting cuckoos, bustards, and turacos with pigeons, mesites, and sandgrouse; (3) cranes and their relatives; (4) a comprehensive waterbird clade, including all diving, wading, and shorebirds; and (5) a comprehensive landbird clade with the enigmatic hoatzin (Opisthocomus hoazin) as the sister group to the rest. Neither of the two main, recently proposed Neoavian clades--Columbea and Passerea--were supported as monophyletic. The results of our divergence time analyses are congruent with the palaeontological record, supporting a major radiation of crown birds in the wake of the Cretaceous-Palaeogene (K-Pg) mass extinction.

1,094 citations