scispace - formally typeset
Search or ask a question
Author

Geraldine Koh

Other affiliations: Singapore Immunology Network
Bio: Geraldine Koh is an academic researcher from Agency for Science, Technology and Research. The author has contributed to research in topics: Genome-wide association study & Immunoglobulin E. The author has an hindex of 3, co-authored 5 publications receiving 191 citations. Previous affiliations of Geraldine Koh include Singapore Immunology Network.

Papers
More filters
Journal ArticleDOI
17 Sep 2019-Immunity
TL;DR: High-dimensional single-cell protein and RNA expression data is integrated to identify distinct markers to delineate monocytes from conventional DC2 (cDC2s), further unravel the heterogeneity of DC subpopulations in health and disease and may pave the way for the identification of specific DC subset-targeting therapies.

283 citations

Journal ArticleDOI
TL;DR: In this paper, the authors performed index-sorted single-cell flow cytometry and RNA sequencing of lesional and non-lesional atopic dermatitis (AD) and psoriasis (PSO) skin to identify macrophages and all dendritic cell (DC)-mediated T cell responses.
Abstract: Inflammatory skin diseases including atopic dermatitis (AD) and psoriasis (PSO) are underpinned by dendritic cell (DC)-mediated T cell responses. Currently, the heterogeneous human cutaneous DC population is incompletely characterized, and its contribution to these diseases remains unclear. Here, we performed index-sorted single-cell flow cytometry and RNA sequencing of lesional and nonlesional AD and PSO skin to identify macrophages and all DC subsets, including the newly described mature LAMP3+BIRC3+ DCs enriched in immunoregulatory molecules (mregDC) and CD14+ DC3. By integrating our indexed data with published skin datasets, we generated a myeloid cell universe of DC and macrophage subsets in healthy and diseased skin. Importantly, we found that CD14+ DC3s increased in PSO lesional skin and co-produced IL1B and IL23A, which are pathological in PSO. Our study comprehensively describes the molecular characteristics of macrophages and DC subsets in AD and PSO at single-cell resolution, and identifies CD14+ DC3s as potential promoters of inflammation in PSO.

43 citations

Journal ArticleDOI
TL;DR: The 17q12-21 locus has a strong genetic association with allergic asthma but not with AR and is correlated with high IgE levels and eosinophil counts in subjects bearing the risk genotype.
Abstract: Background Allergic rhinitis (AR) and asthma are common allergic conditions with a shared genetic component to their cause. The 17q12-21 locus includes several genes that have been linked to asthma susceptibility, but the role of this locus in AR is unclear. Asthma and AR in adults of Chinese ethnicity in Singapore are predominately caused by sensitization against house dust mites with a nearly complete penetrance of the allergen, which presents a unique opportunity for accurately identifying genetic associations with allergic diseases. Objective We sought to define the functional role of 17q12-21 in patients with AR and allergic asthma. Methods We asked whether single nucleotide polymorphisms (SNPs) in the 17q12-21 locus were associated with AR or asthma in a cohort of 3460 ethnic Chinese subjects residing in Singapore (1435 in the discovery phase and 2025 in the validation phase). Full-blood mRNA gene expression data, plasma IgE levels, and immune cell frequencies in peripheral blood were tested against the tag SNP genotypes. Luciferase assays were used to measure the effect of putative promoter SNPs on expression of the asthma-associated orosomucoid-like 3 gene (ORMDL3) . Results Within 17q12-21, only the tag SNP rs8076131 was significantly associated with asthma ( P = 8.53 × 10 −10 ; odds ratio, 0.6715), and AR status was independent of SNPs in this region. C-A alleles at rs8076131 resulted in significantly increased ORMDL3 expression in HEK293 cells in vitro relative to T-G alleles. Moreover, subjects with the risk genotype AA exhibited significantly higher total IgE levels and higher blood eosinophil counts than those with the lower-risk genotypes. Conclusion The 17q12-21 locus has a strong genetic association with allergic asthma but not with AR. The polymorphic effect of this locus is attributed to the linkage set tagged by rs8076131, which affects the expression of ORMDL3 , protein phosphatase 1, regulatory inhibitor subunit 1B ( PPP1R1B ), zona pellucida binding protein 2 ( ZPBP2 ), and gasdermin B (GSDMB) and is correlated with high IgE levels and eosinophil counts in subjects bearing the risk genotype.

33 citations

Journal ArticleDOI
TL;DR: Low expression of SIRL-1 on monocytes is associated with an increased risk for the manifestation of an inflammatory skin disease and underlines the role of both the cell subset and this inhibitory immune receptor in maintaining immune homeostasis in the skin.
Abstract: Expression quantitative trait loci (eQTL) databases represent a valuable resource to link disease-associated SNPs to specific candidate genes whose gene expression is significantly modulated by the SNP under investigation. We previously identified signal inhibitory receptor on leukocytes-1 (SIRL-1) as a powerful regulator of human innate immune cell function. While it is constitutively high expressed on neutrophils, on monocytes the SIRL-1 surface expression varies strongly between individuals. The underlying mechanism of regulation, its genetic control as well as potential clinical implications had not been explored yet. Whole blood eQTL data of a Chinese cohort was used to identify SNPs regulating the expression of VSTM1, the gene encoding SIRL-1. The genotype effect was validated by flow cytometry (cell surface expression), correlated with electrophoretic mobility shift assay (EMSA), chromatin immunoprecipitation (ChIP) and bisulfite sequencing (C-methylation) and its functional impact studied the inhibition of reactive oxygen species (ROS). We found a significant association of a single CpG-SNP, rs612529T/C, located in the promoter of VSTM1. Through flow cytometry analysis we confirmed that primarily in the monocytes the protein level of SIRL-1 is strongly associated with genotype of this SNP. In monocytes, the T allele of this SNP facilitates binding of the transcription factors YY1 and PU.1, of which the latter has been recently shown to act as docking site for modifiers of DNA methylation. In line with this notion rs612529T associates with a complete demethylation of the VSTM1 promoter correlating with the allele-specific upregulation of SIRL-1 expression. In monocytes, this upregulation strongly impacts the IgA-induced production of ROS by these cells. Through targeted association analysis we found a significant Meta P value of 1.14 × 10–6 for rs612529 for association to atopic dermatitis (AD). Low expression of SIRL-1 on monocytes is associated with an increased risk for the manifestation of an inflammatory skin disease. It thus underlines the role of both the cell subset and this inhibitory immune receptor in maintaining immune homeostasis in the skin. Notably, the genetic regulation is achieved by a single CpG-SNP, which controls the overall methylation state of the promoter gene segment.

26 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A review of the recent progress in cancer immunotherapy is outlined, particularly by focusing on landmark studies and the recent single-cell characterization of tumor-associated immune cells, and the phenotypic diversities of intratumoral immune cells and their connections with cancer Immunotherapy are summarized.
Abstract: Immunotherapy has revolutionized cancer treatment and rejuvenated the field of tumor immunology Several types of immunotherapy, including adoptive cell transfer (ACT) and immune checkpoint inhibitors (ICIs), have obtained durable clinical responses, but their efficacies vary, and only subsets of cancer patients can benefit from them Immune infiltrates in the tumor microenvironment (TME) have been shown to play a key role in tumor development and will affect the clinical outcomes of cancer patients Comprehensive profiling of tumor-infiltrating immune cells would shed light on the mechanisms of cancer–immune evasion, thus providing opportunities for the development of novel therapeutic strategies However, the highly heterogeneous and dynamic nature of the TME impedes the precise dissection of intratumoral immune cells With recent advances in single-cell technologies such as single-cell RNA sequencing (scRNA-seq) and mass cytometry, systematic interrogation of the TME is feasible and will provide insights into the functional diversities of tumor-infiltrating immune cells In this review, we outline the recent progress in cancer immunotherapy, particularly by focusing on landmark studies and the recent single-cell characterization of tumor-associated immune cells, and we summarize the phenotypic diversities of intratumoral immune cells and their connections with cancer immunotherapy We believe such a review could strengthen our understanding of the progress in cancer immunotherapy, facilitate the elucidation of immune cell modulation in tumor progression, and thus guide the development of novel immunotherapies for cancer treatment

737 citations

Journal ArticleDOI
Andrea Cossarizza1, Hyun-Dong Chang, Andreas Radbruch, Andreas Acs2  +459 moreInstitutions (160)
TL;DR: These guidelines are a consensus work of a considerable number of members of the immunology and flow cytometry community providing the theory and key practical aspects offlow cytometry enabling immunologists to avoid the common errors that often undermine immunological data.
Abstract: These guidelines are a consensus work of a considerable number of members of the immunology and flow cytometry community. They provide the theory and key practical aspects of flow cytometry enabling immunologists to avoid the common errors that often undermine immunological data. Notably, there are comprehensive sections of all major immune cell types with helpful Tables detailing phenotypes in murine and human cells. The latest flow cytometry techniques and applications are also described, featuring examples of the data that can be generated and, importantly, how the data can be analysed. Furthermore, there are sections detailing tips, tricks and pitfalls to avoid, all written and peer-reviewed by leading experts in the field, making this an essential research companion.

698 citations

Journal ArticleDOI
16 Apr 2020-Cell
TL;DR: This comprehensive analysis of key myeloid subsets in human and mouse identifies critical cellular interactions regulating tumor immunity and defines mechanisms underlying myeloids-targeted immunotherapies currently undergoing clinical testing.

549 citations

Journal ArticleDOI
04 Feb 2021-Cell
TL;DR: A pan-cancer analysis of single myeloid cells from 210 patients across 15 human cancer types identified distinct features of TIMs across cancer types and suggested future avenues for rational, targeted immunotherapies.

374 citations

Journal ArticleDOI
TL;DR: In this paper, a single-cell and spatially resolved transcriptomics analysis of human breast cancers is presented, which reveals recurrent neoplastic cell heterogeneity and heterotypic interactions play central roles in disease progression.
Abstract: Breast cancers are complex cellular ecosystems where heterotypic interactions play central roles in disease progression and response to therapy. However, our knowledge of their cellular composition and organization is limited. Here we present a single-cell and spatially resolved transcriptomics analysis of human breast cancers. We developed a single-cell method of intrinsic subtype classification (SCSubtype) to reveal recurrent neoplastic cell heterogeneity. Immunophenotyping using cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq) provides high-resolution immune profiles, including new PD-L1/PD-L2+ macrophage populations associated with clinical outcome. Mesenchymal cells displayed diverse functions and cell-surface protein expression through differentiation within three major lineages. Stromal-immune niches were spatially organized in tumors, offering insights into antitumor immune regulation. Using single-cell signatures, we deconvoluted large breast cancer cohorts to stratify them into nine clusters, termed 'ecotypes', with unique cellular compositions and clinical outcomes. This study provides a comprehensive transcriptional atlas of the cellular architecture of breast cancer.

303 citations