scispace - formally typeset
Search or ask a question
Author

Geraldo A. Melo

Bio: Geraldo A. Melo is an academic researcher. The author has contributed to research in topics: Tropical and subtropical dry broadleaf forests & Plant ecology. The author has an hindex of 3, co-authored 3 publications receiving 59 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The results suggest that the described herbivory patterns are robust for advanced successional stages (intermediate and late) of the SDTFs, but may not apply to earlysuccessional stages of these forests.
Abstract: This study determined the temporal patterns of herbivory on Handroanthus ochraceus (Cham.) Mattos (Bignoniaceae) along a successional gradient in a seasonally dry tropical forest (SDTF) in southeastern Brazil. We assessed the diversity of free-feeding herbivore insects (sap-suckers and leaf-chewers), leaf herbivory rates, leaf nitrogen content, phenolic compounds, and spider abundance through the rainy season in three different successional stages (early, intermediate, and late). Sampling was conducted in December, at the beginning of the rainy season (with fully expanded young leaves), February (mid-aged leaves), and April, at the end of rainy season (old leaves). Fifteen reproductive trees of H. ochraceus were sampled per successional stage in each month of sampling. Herbivore diversity was highest in the early stage of succession, but herbivory rates were highest in the intermediate and late stages. This result was probably related to differences in herbivore community composition and leaf quality across successional stages. The highest herbivore abundance was found in April in the early successional stage. In addition, we found low levels of herbivory in the intermediate and late successional stages in the second half of the rainy season. For each successional stage, leaf nitrogen content decreased through the rainy season, whereas the concentration of phenolic compounds increased. For the intermediate and late successional stages, the temporal changes that took place as the rainy season progressed corroborated the following hypotheses postulated for SDTFs: (1) both the abundance of chewing insects and herbivory rates decreased, (2) the abundance of natural enemies (i.e., spiders) increased, and (3) leaf quality decreased. These results suggest that the described herbivory patterns are robust for advanced successional stages (intermediate and late) of the SDTFs, but may not apply to early successional stages of these forests.

39 citations

Journal ArticleDOI
TL;DR: The results suggest that insect richness and abundance do not track changes in foliage quality throughout plant ontogeny, but their decrease along rainy season confirms what was predicted for tropical dry forests.
Abstract: We compared the richness and abundance of free-feeding herbivore insects (sap-sucking and leaf-chewing), leaf herbivory damage, leaf toughness and total phenolic content between two ontogenetic stages (juvenile and reproductive) of Handroanthus spongiosus (Rizzini) S. O. Grose (Bignoniaceae) throughout the rainy season in a Brazilian seasonally dry tropical forest. Twenty marked individuals of H. spongiosus were sampled per ontogenetic stage in each period of the rainy season (beginning, middle, and end). Herbivore richness and abundance did not differ between ontogenetic stages, but higher percentage of leaf damage, higher concentration of phenolic compounds, and lower leaf toughness were observed for juvenile individuals. The greatest morphospecies abundance was found at the beginning of the rainy season, but folivory increment was higher at the end, despite the fact that leaf toughness and total phenolic content increased in the same period. No significant relationships between leaf damage and both total phenolic content and leaf toughness were observed. These results suggest that insect richness and abundance do not track changes in foliage quality throughout plant ontogeny, but their decrease along rainy season confirms what was predicted for tropical dry forests. The general trends described in the current study corroborate those described in the literature about herbivores and plant ontogeny. However, the lack of relationship between herbivore damage and the two plant attributes considered here indicates that the analyses of multiple defensive traits (the defense syndrome) must be more enlightening to determine the mechanisms driving temporal and spatial patterns of herbivore attack.

17 citations

Journal ArticleDOI
TL;DR: The results partially corroborate the hypothesis that early successional plants in tropical dry forests exhibit leaf traits involved in the conservative use of water and cause an unexpected decrease in nitrogen content along the chronosequence.
Abstract: Herbivory has significant impacts on individual plants and plant communities, both at ecological and evolutionary time scales. In this context, this study aims to evaluate herbivore damage and its relationship with leaf chemical and structural traits, nutritional status, and forest structural complexity along a successional gradient. We predicted that trees in early successional stages support conservative traits related to drought tolerance (high specific leaf mass and phenolics), whereas trees in light-limited, late successional stages tend to enhance light acquisition strategies (high nitrogen content). We sampled 261 trees from 26 species in 15 plots (50 × 20 m; five per successional stage). From each tree, twenty leaves were collected for leaf trait measures. Phenolic content increased whereas specific leaf mass and nitrogen content decreased from early to late stages. However, leaf damage did not differ among successional stages. Our results partially corroborate the hypothesis that early successional plants in tropical dry forests exhibit leaf traits involved in the conservative use of water. The unexpected decrease in nitrogen content along the chronosequence is likely related to the fact that thinner leaves with low specific leaf mass could have less nitrogen-containing mesophyll per unit area. Mechanisms affecting herbivory intensity varied across scales: at the species level, leaf damage was negatively correlated with tannin concentration and specific leaf mass; at the plot level, leaf damage was positively affected by forest structural complexity. Herbivory patterns in tropical forests are difficult to detect because abiotic factors and multiple top-down and bottom-up forces directly and indirectly affect herbivores.

7 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This study provides solid support for the hypothesis of a decrease in background herbivory with latitude, but only outside the tropics, and demonstrates for the first time that the latitudinal gradient in insect herbvory across the globe is nonlinear, i.e. its slope differs between the climate zones.
Abstract: Aim Latitudinal patterns in biotic interactions, particularly in herbivory, have been widely debated. We conducted a quantitative research synthesis to test whether background losses of woody plant foliage to insects generally decrease from the equator to the poles, and whether geographical gradients in insect herbivory are stronger at higher latitudes than at lower latitudes. Location Global terrestrial ecosystems. Methods We used published and original data (3482 point estimates of the percentage of leaf area consumed by insects, collected from 941 species of woody plants in 836 localities world-wide) to analyse the geographical patterns in total losses of plant foliage and in losses to defoliating, leaf mining and leaf galling insects separately, and we searched for climatic factors that can explain the variation in the levels of background insect herbivory across the globe and within climate zones. Result On average, according to published data woody plants lose 7.55% of their leaf area to insects, but 4.73% according to our original data collected in a blinded way. These losses demonstrate a dome-shaped latitudinal pattern: they peak in temperate zones, slightly decrease towards the equator and strongly decrease towards the poles. This pattern is consistent between published and original data, indicating the robustness of the detected relationship between herbivory and latitude. The climatic factors explaining these latitudinal patterns in insect herbivory differ between climate zones. Main conclusions Our study provides solid support for the hypothesis of a decrease in background herbivory with latitude, but only outside the tropics. For the first time we demonstrate that the latitudinal gradient in insect herbivory across the globe is nonlinear, i.e. its slope differs between the climate zones. In temperate and polar zones, but not in the tropics, background herbivory correlates with mean air temperatures and is therefore likely to increase with climate warming.

100 citations

Journal ArticleDOI
TL;DR: The strong connections found between insect specialization, plant defense divergence, and plant and insect diversities suggest that increasing the understanding of the ecology of biological communities can aid in considerations of how to preserve biodiversity in the future.
Abstract: Some of the most fascinating and challenging questions in ecology are why biodiversity is highest in tropical forests and whether the factors involved are unique to these habitats. I did a worldwide test of the hypotheses that plant community divergence in antiherbivore traits results in higher insect herbivore diversity, and that predominant attack by specialized herbivores promotes plant richness. I found strong correlative support for both ideas. Butterfly diversity was greatest in regions where the community average species-pairwise dissimilarity in antiherbivore traits among plant species was highest. There was also a strong positive relationship between specialized (insect) vs. generalized (mammal) herbivores and plant richness. Regions where herbivory impact by mammals was higher than that of insects tended to have lower plant diversities. In contrast, regions in which insects are the main consumers, particularly in the Central and South American tropics, had the highest plant richness. Latitude did not explain any residual variance in insect or plant richness. The strong connections found between insect specialization, plant defense divergence, and plant and insect diversities suggest that increasing our understanding of the ecology of biological communities can aid in considerations of how to preserve biodiversity in the future.

92 citations

Journal ArticleDOI
TL;DR: A decrease in insect richness and abundance is detected at the end of the rainy season in a Brazilian TDF, probably due to a synchronization of insect activity with the availability of young, highly nutritious plant tissues.
Abstract: The availability and quality of resources for herbivores in tropical dry forests (TDFs) vary in time and space, affecting herbivore guilds differently across spatial scales (both horizontally and vertically), with consequences to the distribution of leaf damage in these forests We attempted to elucidate the distribution patterns of herbivorous insect guilds and leaf damage throughout the secondary succession and vertical stratification along the rainy season in a Brazilian TDF With the advance of the succession, a greater richness and abundance of herbivorous insects were found, resulting in higher leaf damage in intermediate and late stages This pattern, however, was not observed for the frequency of leaf miners At a smaller spatial scale, the host tree height positively affected the richness and abundance of insects The higher leaf damage was found in canopy, which also harbored a greater richness and abundance of chewing herbivores compared to the understory at both the beginning and the end of the rainy season Although for sap-sucking insects, this was only true at the beginning of the season We detected a decrease in insect richness and abundance at the end of the rainy season, probably due to a synchronization of insect activity with the availability of young, highly nutritious plant tissues These results are consistent with other studies that found a general trend of increasing richness and abundance of herbivorous insects and leaf damage throughout the secondary succession (early to late stages) and between vertical strata (understory to canopy), suggesting that forest complexity positively affects herbivores

56 citations

Journal ArticleDOI
TL;DR: It is hoped that future research into insect herbivory along environmental gradients will take into account herbvory other than just leaf chewing, such as sap sucking, which may cause more damage to plants, as well as damage to a young leaf may be more costly to a plant thandamage to a mature or senescing leaf.
Abstract: There is a general assumption in the literature that insect herbivory increases towards the tropics, but decreases with increasing altitude. Similar generalities have been identified along other environmental gradients, such as resource, temperature, climatic and biotic gradients. However there is growing evidence in the scientific literature that such generalities are not consistent. This could be due to a number of reasons including the lack of consistency in the way herbivory is assessed such as different methodologies used by researchers, or fundamental differences in leaf damage caused by different types of insect herbivores. Here we assess 61 publications researching insect herbivory along a range of environmental gradients (both biotic and abiotic) and review the methods that researchers have used to collected their data. We found leaf chewing from samples collected in North America dominated the field and most studies assessed herbivory on a single host plant species. Thirty three percent of the studies assessed latitudinal gradients, while 10% assessed altitudinal gradients. Insect herbivory was most commonly expressed as percentage leaf damage using point herbivory. Fewer studies measured a range of different types of herbivory (such as sap sucking, leaf mining, galling, and root feeding) as leaves aged. From our synthesis, we hope that future research into insect herbivory along environmental gradients will take into account herbivory other than just leaf chewing, such as sap sucking, which may cause more damage to plants. Future research should also assess herbivory as a rate, rather than just a single point in time as damage to a young leaf may be more costly to a plant than damage to a mature or senescing leaf. Measurements of plant traits will also assist in comparing herbivory across habitats, plant species, and within species physiological variation. The true impacts that insects have on plants via herbivory along environmental gradients are still poorly understood.

50 citations