scispace - formally typeset
Search or ask a question
Author

Gerard Mourou

Bio: Gerard Mourou is an academic researcher from École Polytechnique. The author has contributed to research in topics: Laser & Ultrashort pulse. The author has an hindex of 82, co-authored 653 publications receiving 34147 citations. Previous affiliations of Gerard Mourou include University of Michigan & San Diego State University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors re-examine the underlying dynamics of mirror motion in a graded-density plasma to provide an explicit trajectory as a function of the plasma density and its gradient.
Abstract: It has been proposed that laser-induced relativistic plasma mirror can accelerate if the plasma has a properly tailored density profile. Such accelerating plasma mirrors can serve as analog black holes to investigate Hawking evaporation and the associated information loss paradox. Here we reexamine the underlying dynamics of mirror motion in a graded-density plasma to provide an explicit trajectory as a function of the plasma density and its gradient. Specifically, a decreasing plasma density profile (down-ramp) along the direction of laser propagation would in general accelerate the mirror. In particular, a constant-plus-exponential density profile would generate the Davies-Fulling trajectory with a well-defined analog Hawking temperature, which is sensitive to the plasma density gradient but not to the density itself. We show that without invoking nano-fabricated thin-films, a much lower density gas target at, for example, $\sim 1\times 10^{17}{\rm cm}^{-3}$, would be able to induce an analog Hawking temperature, $k_{_B}T_{_H}\sim 6.6 \times 10^{-2}{\rm eV}$, in the far-infrared region. We hope that this would help to better realize the experiment proposed by Chen and Mourou.

15 citations

Patent
16 Feb 1982
TL;DR: In this article, the temporal shape of optical pulses is measured over a wide dynamic range, for example, 10 orders of magnitude, by passing an optical signal corresponding to the autocorrelation function of the optical pulses through a variable attenuation filter.
Abstract: The temporal shape of optical pulses is measured over a wide dynamic range, for example, 10 orders of magnitude, by passing an optical signal corresponding to the autocorrelation function of the optical pulses through a variable attenuation filter, the position of which is a function of the attenuation. By plotting the attenuation of the filter in terms of the position thereof, against the duration of the temporal overlap of the pulses in a mixing crystal which produces the optical signal corresponding to the autocorrelation function, the temporal shape of the pulses is displayed.

14 citations

Proceedings ArticleDOI
TL;DR: In this paper, the use of >petawatt-ps laser pulses from the non-thermal ignition based on ultrahigh acceleration of plasma blocks by the nonlinear (ponderomotive) force, has to be combined with the measured ultrahigh magnetic fields in the 10 kilotesla range for cylindrical trapping.
Abstract: An alternative way may be possible for igniting solid density hydrogen- 11 B (HB11) fuel. The use of >petawatt-ps laser pulses from the non-thermal ignition based on ultrahigh acceleration of plasma blocks by the nonlinear (ponderomotive) force, has to be combined with the measured ultrahigh magnetic fields in the 10 kilotesla range for cylindrical trapping. The evaluation of measured alpha particles from HB11 reactions arrives at the conclusion that apart from the usual binary nuclear reactions, secondary reactions by an avalanche multiplication may cause the high gains, even much higher than from deuterium tritium fusion. This may be leading to a concept of clean economic power generation.

14 citations

Patent
27 Aug 1981
TL;DR: In this article, the photoelectrons are absorbed in the semiconductor material to create throughout the gap a degenerate layer and the gap geometry and the image formed by the optical signal on a photocathode, which provides the photo-electronic signal, are such that space charge effects do not distort the photoelectric signal and a temporal replica of the optical signals illuminates the entire gap.
Abstract: Picosecond switching of electric current in response to optical signals is obtained by conversion of the optical signal, such as an optical pulse, into a photoelectron burst (a photoelectronic signal) which is a faithful temporal replica of the optical signal. Electron optics increase the energy of the electrons of the photoelectronic signal which is imaged so as to illuminate essentially the entire gap formed between electrodes on a body of semiconductor material. The photoelectrons are absorbed in the semiconductor material to create throughout the gap a degenerate layer. The gap geometry and the image formed by the optical signal on a photocathode, which provides the photoelectronic signal, are such that space charge effects do not distort the photoelectronic signal and a temporal replica of the optical signal illuminates the entire gap. The gap geometry affords broad bandwidth operation. Due to the gain in the system, the high photoelectron energy obtainable after electron acceleration permits the use of large band gap semiconductor materials which have high dielectric strength and are not prone to thermal breakdown effects. By deflecting the photoelectrons across a plurality of side-by-side gaps on the semiconductor, extremely high speed demultiplexing of extremely high frequency optical signals (in picosecond samples) can be obtained.

14 citations

Patent
17 Jun 1980
TL;DR: In this article, a body of semiconductor material is biased with multi-kilovolt voltage to establish an electric field approaching the dielectric breakdown field for the semiconductor materials.
Abstract: A body of semiconductor material is biased with multi-kilovolt voltage to establish an electric field approaching the dielectric breakdown field for the semiconductor material. Low level optical energy, such as a laser pulse in the nano-joule range produces free carriers in the semiconductor which multiply in the presence of the electric field to produce avalanche conduction through the semiconductor body thereby switching the multi-kilovolt voltage in precise timed (picosecond) relationship with the application of the optical energy and with high switching or turn on sensitivity.

14 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
01 Apr 1988-Nature
TL;DR: In this paper, a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) is presented.
Abstract: Deposits of clastic carbonate-dominated (calciclastic) sedimentary slope systems in the rock record have been identified mostly as linearly-consistent carbonate apron deposits, even though most ancient clastic carbonate slope deposits fit the submarine fan systems better. Calciclastic submarine fans are consequently rarely described and are poorly understood. Subsequently, very little is known especially in mud-dominated calciclastic submarine fan systems. Presented in this study are a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) that reveals a >250 m thick calciturbidite complex deposited in a calciclastic submarine fan setting. Seven facies are recognised from core and thin section characterisation and are grouped into three carbonate turbidite sequences. They include: 1) Calciturbidites, comprising mostly of highto low-density, wavy-laminated bioclast-rich facies; 2) low-density densite mudstones which are characterised by planar laminated and unlaminated muddominated facies; and 3) Calcidebrites which are muddy or hyper-concentrated debrisflow deposits occurring as poorly-sorted, chaotic, mud-supported floatstones. These

9,929 citations

Journal ArticleDOI
11 Oct 2012-Nature
TL;DR: This work reviews recent progress in graphene research and in the development of production methods, and critically analyse the feasibility of various graphene applications.
Abstract: Recent years have witnessed many breakthroughs in research on graphene (the first two-dimensional atomic crystal) as well as a significant advance in the mass production of this material. This one-atom-thick fabric of carbon uniquely combines extreme mechanical strength, exceptionally high electronic and thermal conductivities, impermeability to gases, as well as many other supreme properties, all of which make it highly attractive for numerous applications. Here we review recent progress in graphene research and in the development of production methods, and critically analyse the feasibility of various graphene applications.

7,987 citations

01 Dec 1982
TL;DR: In this article, it was shown that any black hole will create and emit particles such as neutrinos or photons at just the rate that one would expect if the black hole was a body with a temperature of (κ/2π) (ħ/2k) ≈ 10−6 (M/M)K where κ is the surface gravity of the body.
Abstract: QUANTUM gravitational effects are usually ignored in calculations of the formation and evolution of black holes. The justification for this is that the radius of curvature of space-time outside the event horizon is very large compared to the Planck length (Għ/c3)1/2 ≈ 10−33 cm, the length scale on which quantum fluctuations of the metric are expected to be of order unity. This means that the energy density of particles created by the gravitational field is small compared to the space-time curvature. Even though quantum effects may be small locally, they may still, however, add up to produce a significant effect over the lifetime of the Universe ≈ 1017 s which is very long compared to the Planck time ≈ 10−43 s. The purpose of this letter is to show that this indeed may be the case: it seems that any black hole will create and emit particles such as neutrinos or photons at just the rate that one would expect if the black hole was a body with a temperature of (κ/2π) (ħ/2k) ≈ 10−6 (M/M)K where κ is the surface gravity of the black hole1. As a black hole emits this thermal radiation one would expect it to lose mass. This in turn would increase the surface gravity and so increase the rate of emission. The black hole would therefore have a finite life of the order of 1071 (M/M)−3 s. For a black hole of solar mass this is much longer than the age of the Universe. There might, however, be much smaller black holes which were formed by fluctuations in the early Universe2. Any such black hole of mass less than 1015 g would have evaporated by now. Near the end of its life the rate of emission would be very high and about 1030 erg would be released in the last 0.1 s. This is a fairly small explosion by astronomical standards but it is equivalent to about 1 million 1 Mton hydrogen bombs. It is often said that nothing can escape from a black hole. But in 1974, Stephen Hawking realized that, owing to quantum effects, black holes should emit particles with a thermal distribution of energies — as if the black hole had a temperature inversely proportional to its mass. In addition to putting black-hole thermodynamics on a firmer footing, this discovery led Hawking to postulate 'black hole explosions', as primordial black holes end their lives in an accelerating release of energy.

2,947 citations

Journal ArticleDOI
TL;DR: Terahertz spectroscopy and imaging provide a powerful tool for the characterization of a broad range of materials, including semiconductors and biomolecules, as well as novel, higher-power terahertz sources.
Abstract: Terahertz spectroscopy systems use far-infrared radiation to extract molecular spectral information in an otherwise inaccessible portion of the electromagnetic spectrum. Materials research is an essential component of modern terahertz systems: novel, higher-power terahertz sources rely heavily on new materials such as quantum cascade structures. At the same time, terahertz spectroscopy and imaging provide a powerful tool for the characterization of a broad range of materials, including semiconductors and biomolecules.

2,673 citations