scispace - formally typeset
Search or ask a question
Author

Gerard Mourou

Bio: Gerard Mourou is an academic researcher from École Polytechnique. The author has contributed to research in topics: Laser & Ultrashort pulse. The author has an hindex of 82, co-authored 653 publications receiving 34147 citations. Previous affiliations of Gerard Mourou include University of Michigan & San Diego State University.


Papers
More filters
22 Mar 2022
TL;DR: In this paper , the authors summarize the ongoing theoretical and experimental work on PetaVolts per meter plasmonics, as well as map out strategies for the future, and address various challenges that underlie the potential of Plasmonic modes.
Abstract: . Plasmonic modes offer the potential to achieve PetaVolts per meter fields, that would transform the current paradigm in collider development in addition to non-collider searches in fundamental physics. PetaVolts per meter plasmonics relies on collective oscillations of the free electron Fermi gas inherent in the conduction band of materials that have a suitable combination of constituent atoms and ionic lattice structure. As the conduction band free electron density, at equilibrium, can be as high as 10 24 cm − 3 , electromagnetic fields of the order of 0 . 1 (cid:112) n 0 (10 24 cm − 3 ) PVm − 1 can be sustained by plasmonic modes. Engineered materials not only allow highly tunable material properties but quite critically make it possible to overcome disruptive instabilities that dominate the interactions in bulk media. Due to rapid shielding by the free electron Fermi gas, dielectric effects are strongly suppressed. Because the ionic lattice, the corresponding electronic energy bands and the free electron gas are governed by quantum mechanical effects, comparisons with plasmas are merely notional. Based on this framework, it is critical to address various challenges that underlie PetaVolts per meter plasmonics including stable excitation of plasmonic modes while accounting for their effects on the ionic lattice and the electronic energy band structure over femtosecond timescales. We summarize the ongoing theoretical and experimental efforts as well as map out strategies for the future. Extreme plasmonic fields can shape the future by not only bringing tens of TeV to multi-PeV center-of-mass-energies within reach but also by opening novel pathways in non-collider HEP.

2 citations

Proceedings ArticleDOI
03 Nov 2000
TL;DR: Subsurface photodisruption is shown to be an effective tool for cutting beneath the surface in human sclera by using a dehydrating agent to reduce scattering by index matching and penetrating into the adjacent tissue.
Abstract: Approximately five million people worldwide are blind due to complications from glaucoma. Current surgical techniques often fail due to infection and scarring. Both failure routes are associated with damaging surface tissues. Femtosecond lasers allow a method to create a highly precise incision beneath the surface of the tissue without damaging any of the overlying layers. However, subsurface surgery can only be performed where the beam can be focused tightly enough to cause optical breakdown. Under normal conditions, subsurface surgery is not possible since sclera is highly scattering. Using two independent methods, we show completely subsurface surgery in human sclera using a femtosecond laser. The first method is to make the sclera transparent by injecting a dehydrating agent. The second method is to choose a wavelength that is highly focusable in the sclera. Both methods may be applied in other tissues, such as skin. We show highly precise incisions in in vitro tissues. Subsurface femtosecond photodisruption may be useful for in vivo surgical technique to perform a completely subsurface surgery.

2 citations

Proceedings ArticleDOI
31 Oct 1994
TL;DR: In this paper, the authors measured the spectral evolution of the supercontinuum radiation as a function of incident laser power and gas pressure, and observed an intense conical emission with sharp spectral and spatial maxima.
Abstract: Self-action during the propagation of ultrashort intense laser pulses through dense gases is practically unavoidable and leads to a dramatic change of pulse characteristics such as the beam size and frequency spectrum. The authors report results of experiments on propagation of ultrashort intense laser pulses in high pressure (1-40 atm) gas media. Self-focusing (SF) was observed under various conditions of gas pressure and laser power, accompanied by such phenomena as supercontinuum (SC) generation, conical emission (CE) and optical breakdown (OB). Supercontinuum generation (i.e. a nearly white spectrum generated upon propagation of intense short laser pulses through nonlinear media) has been observed in gases only recently, with appearance a new generation of powerful ultrashort lasers. The authors measured for the first time the spectral evolution of the supercontinuum radiation as a function of incident laser power and gas pressure. The single shot SC spectrum was deeply modulated, with this modulation changing with gas pressure and laser power. Beyond the SC generation threshold the authors also observed an intense conical emission with sharp spectral and spatial maxima.

2 citations

Proceedings ArticleDOI
18 Mar 1991
TL;DR: In this paper, the authors present tunable femtosecond oscillators and amplifiers using Ti:Al2O3, which produce gigawatt pulses at wavelengths compatible with large Alexandrite or glass amplifiers.
Abstract: We present recent developments in tunable femtosecond oscillators and amplifiers using Ti:Al2O3. These systems produce gigawatt pulses at wavelengths compatible with large Alexandrite or glass amplifiers.

2 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
01 Apr 1988-Nature
TL;DR: In this paper, a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) is presented.
Abstract: Deposits of clastic carbonate-dominated (calciclastic) sedimentary slope systems in the rock record have been identified mostly as linearly-consistent carbonate apron deposits, even though most ancient clastic carbonate slope deposits fit the submarine fan systems better. Calciclastic submarine fans are consequently rarely described and are poorly understood. Subsequently, very little is known especially in mud-dominated calciclastic submarine fan systems. Presented in this study are a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) that reveals a >250 m thick calciturbidite complex deposited in a calciclastic submarine fan setting. Seven facies are recognised from core and thin section characterisation and are grouped into three carbonate turbidite sequences. They include: 1) Calciturbidites, comprising mostly of highto low-density, wavy-laminated bioclast-rich facies; 2) low-density densite mudstones which are characterised by planar laminated and unlaminated muddominated facies; and 3) Calcidebrites which are muddy or hyper-concentrated debrisflow deposits occurring as poorly-sorted, chaotic, mud-supported floatstones. These

9,929 citations

Journal ArticleDOI
11 Oct 2012-Nature
TL;DR: This work reviews recent progress in graphene research and in the development of production methods, and critically analyse the feasibility of various graphene applications.
Abstract: Recent years have witnessed many breakthroughs in research on graphene (the first two-dimensional atomic crystal) as well as a significant advance in the mass production of this material. This one-atom-thick fabric of carbon uniquely combines extreme mechanical strength, exceptionally high electronic and thermal conductivities, impermeability to gases, as well as many other supreme properties, all of which make it highly attractive for numerous applications. Here we review recent progress in graphene research and in the development of production methods, and critically analyse the feasibility of various graphene applications.

7,987 citations

01 Dec 1982
TL;DR: In this article, it was shown that any black hole will create and emit particles such as neutrinos or photons at just the rate that one would expect if the black hole was a body with a temperature of (κ/2π) (ħ/2k) ≈ 10−6 (M/M)K where κ is the surface gravity of the body.
Abstract: QUANTUM gravitational effects are usually ignored in calculations of the formation and evolution of black holes. The justification for this is that the radius of curvature of space-time outside the event horizon is very large compared to the Planck length (Għ/c3)1/2 ≈ 10−33 cm, the length scale on which quantum fluctuations of the metric are expected to be of order unity. This means that the energy density of particles created by the gravitational field is small compared to the space-time curvature. Even though quantum effects may be small locally, they may still, however, add up to produce a significant effect over the lifetime of the Universe ≈ 1017 s which is very long compared to the Planck time ≈ 10−43 s. The purpose of this letter is to show that this indeed may be the case: it seems that any black hole will create and emit particles such as neutrinos or photons at just the rate that one would expect if the black hole was a body with a temperature of (κ/2π) (ħ/2k) ≈ 10−6 (M/M)K where κ is the surface gravity of the black hole1. As a black hole emits this thermal radiation one would expect it to lose mass. This in turn would increase the surface gravity and so increase the rate of emission. The black hole would therefore have a finite life of the order of 1071 (M/M)−3 s. For a black hole of solar mass this is much longer than the age of the Universe. There might, however, be much smaller black holes which were formed by fluctuations in the early Universe2. Any such black hole of mass less than 1015 g would have evaporated by now. Near the end of its life the rate of emission would be very high and about 1030 erg would be released in the last 0.1 s. This is a fairly small explosion by astronomical standards but it is equivalent to about 1 million 1 Mton hydrogen bombs. It is often said that nothing can escape from a black hole. But in 1974, Stephen Hawking realized that, owing to quantum effects, black holes should emit particles with a thermal distribution of energies — as if the black hole had a temperature inversely proportional to its mass. In addition to putting black-hole thermodynamics on a firmer footing, this discovery led Hawking to postulate 'black hole explosions', as primordial black holes end their lives in an accelerating release of energy.

2,947 citations

Journal ArticleDOI
TL;DR: Terahertz spectroscopy and imaging provide a powerful tool for the characterization of a broad range of materials, including semiconductors and biomolecules, as well as novel, higher-power terahertz sources.
Abstract: Terahertz spectroscopy systems use far-infrared radiation to extract molecular spectral information in an otherwise inaccessible portion of the electromagnetic spectrum. Materials research is an essential component of modern terahertz systems: novel, higher-power terahertz sources rely heavily on new materials such as quantum cascade structures. At the same time, terahertz spectroscopy and imaging provide a powerful tool for the characterization of a broad range of materials, including semiconductors and biomolecules.

2,673 citations