scispace - formally typeset
Search or ask a question
Author

Gérard Roger

Bio: Gérard Roger is an academic researcher from University of Paris-Sud. The author has contributed to research in topics: Femtosecond & Laser. The author has an hindex of 13, co-authored 28 publications receiving 6852 citations. Previous affiliations of Gérard Roger include Centre national de la recherche scientifique.
Topics: Femtosecond, Laser, Photon, Dye laser, Excited state

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the relationship of linear polarizations of pairs of photons was measured with time-varying analyzers, and the results were in good agreement with quantum mechanical predictions but violate Bell's inequalities by 5 standard deviations.
Abstract: Correlations of linear polarizations of pairs of photons have been measured with time-varying analyzers. The analyzer in each leg of the apparatus is an acousto-optical switch followed by two linear polarizers. The switches operate at incommensurate frequencies near 50 MHz. Each analyzer amounts to a polarizer which jumps between two orientations in a time short compared with the photon transit time. The results are in good agreement with quantum mechanical predictions but violate Bell's inequalities by 5 standard deviations.

3,302 citations

Journal ArticleDOI
TL;DR: In this article, the linear polarization correlation of the photons emitted in a radiative atomic cascade of calcium was measured, in excellent agreement with the quantum mechanical predictions, strongly violate the generalized Bell's inequalities, and rule out the whole class of realistic local theories.
Abstract: We have measured the linear polarization correlation of the photons emitted in a radiative atomic cascade of calcium A high-efficiency source provided an improved statistical accuracy and an ability to perform new tests Our results, in excellent agreement with the quantum mechanical predictions, strongly violate the generalized Bell's inequalities, and rule out the whole class of realistic local theories No significant change in results was observed with source-polarizer separations of up to 65 m

1,952 citations

Journal ArticleDOI
15 Feb 1986-EPL
TL;DR: In this article, the authors report on two experiments using an atomic cascade as a light source, and a triggered detection scheme for the second photon of the cascade, which is in contradiction with any classical wave model of light but in agreement with a quantum description involving single-photon states.
Abstract: We report on two experiments using an atomic cascade as a light source, and a triggered detection scheme for the second photon of the cascade. The first experiment shows a strong anticorrelation between the triggered detections on both sides of a beam splitter. This result is in contradiction with any classical wave model of light, but in agreement with a quantum description involving single-photon states. The same source and detection scheme were used in a second experiment, where we have observed interferences with a visibility over 98%. During the past fifteen years, nonclassical effects in the statistical properties of light have been extensively studied from a theoretical point of view (l), and some have been experimentally demonstrated (2-71. All are related to second-order coherence properties, via measurements of intensity correlation functions or of statistical moments. However, there has still been no test of the conceptually very simple situation dealing with single- photon states of the light impinging on a beam splitter. In this case, quantum mechanics predicts a perfect anticorrelation for photodetections on both sides of the beam splitter (a single-photon can only be detected once!), while any description involving classical fields would predict some amount of coincidences. In the first part of this letter, we report on an experiment close to this ideal situation, since we have found a coincidence rate, on both sides of a beam splitter, five times smaller than the classical lower limit. When it comes to single-photon states of light, it is tempting to revisit the famous historical .single-photon interference experiments. (8). One then finds that, in spite of their

840 citations

Journal Article
TL;DR: In this paper, the authors report on two experiments using an atomic cascade as a light source, and a triggered detection scheme for the second photon of the cascade, which is in contradiction with any classical wave model of light but in agreement with a quantum description involving single-photon states.
Abstract: We report on two experiments using an atomic cascade as a light source, and a triggered detection scheme for the second photon of the cascade. The first experiment shows a strong anticorrelation between the triggered detections on both sides of a beam splitter. This result is in contradiction with any classical wave model of light, but in agreement with a quantum description involving single-photon states. The same source and detection scheme were used in a second experiment, where we have observed interferences with a visibility over 98%. During the past fifteen years, nonclassical effects in the statistical properties of light have been extensively studied from a theoretical point of view (l), and some have been experimentally demonstrated (2-71. All are related to second-order coherence properties, via measurements of intensity correlation functions or of statistical moments. However, there has still been no test of the conceptually very simple situation dealing with single- photon states of the light impinging on a beam splitter. In this case, quantum mechanics predicts a perfect anticorrelation for photodetections on both sides of the beam splitter (a single-photon can only be detected once!), while any description involving classical fields would predict some amount of coincidences. In the first part of this letter, we report on an experiment close to this ideal situation, since we have found a coincidence rate, on both sides of a beam splitter, five times smaller than the classical lower limit. When it comes to single-photon states of light, it is tempting to revisit the famous historical .single-photon interference experiments. (8). One then finds that, in spite of their

645 citations

Journal ArticleDOI
TL;DR: A new type of time correlation analysis of resonance fluorescence is presented in this paper, where a strontium atomic beam is excited by a 28-AA{}A-off-resonance laser.
Abstract: A new type of time correlation analysis of resonance fluorescence is presented. A strontium atomic beam is excited by a 28-\AA{}A-off-resonance laser. The photons of the two sidebands of the fluorescence triplet are shown to be emitted in a well-defined time order. A simple interpretation of this effect is given which implies a quantum jump of the atom from the lower to the upper state through a multiphoton process.

139 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, the basic aspects of entanglement including its characterization, detection, distillation, and quantification are discussed, and a basic role of entonglement in quantum communication within distant labs paradigm is discussed.
Abstract: All our former experience with application of quantum theory seems to say: {\it what is predicted by quantum formalism must occur in laboratory} But the essence of quantum formalism - entanglement, recognized by Einstein, Podolsky, Rosen and Schr\"odinger - waited over 70 years to enter to laboratories as a new resource as real as energy This holistic property of compound quantum systems, which involves nonclassical correlations between subsystems, is a potential for many quantum processes, including ``canonical'' ones: quantum cryptography, quantum teleportation and dense coding However, it appeared that this new resource is very complex and difficult to detect Being usually fragile to environment, it is robust against conceptual and mathematical tools, the task of which is to decipher its rich structure This article reviews basic aspects of entanglement including its characterization, detection, distillation and quantifying In particular, the authors discuss various manifestations of entanglement via Bell inequalities, entropic inequalities, entanglement witnesses, quantum cryptography and point out some interrelations They also discuss a basic role of entanglement in quantum communication within distant labs paradigm and stress some peculiarities such as irreversibility of entanglement manipulations including its extremal form - bound entanglement phenomenon A basic role of entanglement witnesses in detection of entanglement is emphasized

6,980 citations

Journal ArticleDOI
TL;DR: The author revealed that quantum teleportation as “Quantum one-time-pad” had changed from a “classical teleportation” to an “optical amplification, privacy amplification and quantum secret growing” situation.
Abstract: Quantum cryptography could well be the first application of quantum mechanics at the individual quanta level. The very fast progress in both theory and experiments over the recent years are reviewed, with emphasis on open questions and technological issues.

6,949 citations

Book
01 Jul 2007
TL;DR: Barad, a theoretical physicist and feminist theorist, elaborates her theory of agential realism as mentioned in this paper, which is at once a new epistemology, ontology, and ethics.
Abstract: Meeting the Universe Halfway is an ambitious book with far-reaching implications for numerous fields in the natural sciences, social sciences, and humanities. In this volume, Karen Barad, theoretical physicist and feminist theorist, elaborates her theory of agential realism. Offering an account of the world as a whole rather than as composed of separate natural and social realms, agential realism is at once a new epistemology, ontology, and ethics. The starting point for Barad’s analysis is the philosophical framework of quantum physicist Niels Bohr. Barad extends and partially revises Bohr’s philosophical views in light of current scholarship in physics, science studies, and the philosophy of science as well as feminist, poststructuralist, and other critical social theories. In the process, she significantly reworks understandings of space, time, matter, causality, agency, subjectivity, and objectivity. In an agential realist account, the world is made of entanglements of “social” and “natural” agencies, where the distinction between the two emerges out of specific intra-actions. Intra-activity is an inexhaustible dynamism that configures and reconfigures relations of space-time-matter. In explaining intra-activity, Barad reveals questions about how nature and culture interact and change over time to be fundamentally misguided. And she reframes understanding of the nature of scientific and political practices and their “interrelationship.” Thus she pays particular attention to the responsible practice of science, and she emphasizes changes in the understanding of political practices, critically reworking Judith Butler’s influential theory of performativity. Finally, Barad uses agential realism to produce a new interpretation of quantum physics, demonstrating that agential realism is more than a means of reflecting on science; it can be used to actually do science.

4,731 citations

Journal ArticleDOI
TL;DR: It is proved that an EPP involving one-way classical communication and acting on mixed state M (obtained by sharing halves of Einstein-Podolsky-Rosen pairs through a channel) yields a QECC on \ensuremath{\chi} with rate Q=D, and vice versa, and it is proved Q is not increased by adding one- way classical communication.
Abstract: Entanglement purification protocols (EPPs) and quantum error-correcting codes (QECCs) provide two ways of protecting quantum states from interaction with the environment. In an EPP, perfectly entangled pure states are extracted, with some yield D, from a mixed state M shared by two parties; with a QECC, an arbitrary quantum state |\ensuremath{\xi}〉 can be transmitted at some rate Q through a noisy channel \ensuremath{\chi} without degradation. We prove that an EPP involving one-way classical communication and acting on mixed state M^(\ensuremath{\chi}) (obtained by sharing halves of Einstein-Podolsky-Rosen pairs through a channel \ensuremath{\chi}) yields a QECC on \ensuremath{\chi} with rate Q=D, and vice versa. We compare the amount of entanglement E(M) required to prepare a mixed state M by local actions with the amounts ${\mathit{D}}_{1}$(M) and ${\mathit{D}}_{2}$(M) that can be locally distilled from it by EPPs using one- and two-way classical communication, respectively, and give an exact expression for E(M) when M is Bell diagonal. While EPPs require classical communication, QECCs do not, and we prove Q is not increased by adding one-way classical communication. However, both D and Q can be increased by adding two-way communication. We show that certain noisy quantum channels, for example a 50% depolarizing channel, can be used for reliable transmission of quantum states if two-way communication is available, but cannot be used if only one-way communication is available. We exhibit a family of codes based on universal hashing able to achieve an asymptotic Q (or D) of 1-S for simple noise models, where S is the error entropy. We also obtain a specific, simple 5-bit single-error-correcting quantum block code. We prove that iff a QECC results in high fidelity for the case of no error then the QECC can be recast into a form where the encoder is the matrix inverse of the decoder. \textcopyright{} 1996 The American Physical Society.

4,563 citations

Journal ArticleDOI
28 Oct 1982-Nature
TL;DR: In this article, the linearity of quantum mechanics has been shown to prevent the replication of a photon of definite polarization in the presence of an excited atom, and the authors show that this conclusion holds for all quantum systems.
Abstract: If a photon of definite polarization encounters an excited atom, there is typically some nonvanishing probability that the atom will emit a second photon by stimulated emission. Such a photon is guaranteed to have the same polarization as the original photon. But is it possible by this or any other process to amplify a quantum state, that is, to produce several copies of a quantum system (the polarized photon in the present case) each having the same state as the original? If it were, the amplifying process could be used to ascertain the exact state of a quantum system: in the case of a photon, one could determine its polarization by first producing a beam of identically polarized copies and then measuring the Stokes parameters1. We show here that the linearity of quantum mechanics forbids such replication and that this conclusion holds for all quantum systems.

4,544 citations