scispace - formally typeset
Search or ask a question
Author

Gerardo M. Casañola-Martin

Bio: Gerardo M. Casañola-Martin is an academic researcher from Carleton University. The author has contributed to research in topics: Quantitative structure–activity relationship & Virtual screening. The author has an hindex of 18, co-authored 49 publications receiving 693 citations. Previous affiliations of Gerardo M. Casañola-Martin include Hanoi University & University of Ciego de Ávila.


Papers
More filters
Journal ArticleDOI
TL;DR: Bond-extended stochastic and nonstochastic bilinear indices are introduced as novel bond-level molecular descriptors (MDs) in this article, which can be easily and quickly calculated in our in house software TOMOCOMD-CARDD (topological molecular computational design computer-aided-rational-drug design).
Abstract: Bond-extended stochastic and nonstochastic bilinear indices are introduced in this article as novel bond-level molecular descriptors (MDs). These novel totals (whole-molecule) MDs are based on bilinear maps (forms) similar to use defined in linear algebra. The proposed nonstochastic indices try to match molecular structure provided by the molecular topology by using the kth Edge(Bond)-Adjacency Matrix (Ek, designed here as a nonstochastic E matrix). The stochastic parameters are computed by using the kth stochastic edge-adjacency matrix, ESk, as matrix operators of bilinear transformations. This new edge (bond)-adjacency relationship can be obtained directly from Ek and can be considered like a new matrix-transformation strategic to obtain new relations for a molecular graph. In both set of MDs, chemical information is codified by using different pair combinations of atomic weightings (in this case four atomic-labels: atomic mass, polarizability, van der Waals volume, and electronegativity). In addition, a local-fragment (bond-type) formalism was also developed. The kth bond-type bilinear indices are calculated by summing the kth bond bilinear indices of all bonds of the same bond type in the molecules. The new set of MDs can be easily and quickly calculated in our in house software TOMOCOMD-CARDD (topological molecular computational design computer-aided-rational-drug design). The reported application and utilization of these MDs for predictive capability correlations of structure with physicochemical and pharmacological properties are reviewed. Three benchmark datasets have been used to evaluate the QSPR/QSAR behavior of the new bond-level TOMOCOMD-CARDD MDs. We developed the QSPR models to describe several physicochemical properties of octane isomers (First Case) and, to analyze of the boiling point of 28 alkyl-alcohols (Second Case) and to examine of the specific rate constant (log k), the partition coefficient (log P), as well as the antibacterial activity of 34 derivatives of 2-furylethylenes (Third Case). For these three rounds, the quantitative models found are significant from a statistical point of view and permit a clear interpretation of the studied properties in terms of the structural features of molecules. A leave-one-out cross-validation procedure revealed that the regression models had a good predictability. The comparison with other approaches reveals good performance of the method proposed. Therefore, it is clearly demonstrated that this suitability is higher than that shown by other 2D/3D well-known sets of MDs. The approach described here appears to be a very promising structural invariant, useful for QSPR/QSAR studies and shown to provide an excellent alternative or guides for discovery and optimization of new lead compounds, reducing the time and cost of the traditional procedure. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2011

4 citations

Journal ArticleDOI
TL;DR: The atom-based linear index together with different classic and machine learning classification techniques in a QSAR (quantitative structure-activity relationship) study contributes as a useful tool for the early detection of novel UPP inhibitors for the treatment of the multiple myeloma and related diseases.
Abstract: This report showed the use of the atom-based linear index together with different classic and machine learning classification techniques in a QSAR (quantitative structure-activity relationship) study. A PubChem BioAssay DataSet composed by 705 compounds with inhibitory (258 chemicals) and non-inhibitory (447 compounds) activity against the ubiquitin-proteasome pathway were used. The classification models were developed using the linear discriminant analysis, support vector machine, Bayesian networks, k-nearest neighbor, and random forest techniques. In this sense, all the QSAR models show accuracies above 85% in the training set and values of the Matthews correlation coefficient ranging from 0.68 to 0.83. The external validation set shows adequate classifications between 81.25 and 86.36% and Matthews’s correlation coefficient values ranging from 0.59 to 0.70. The present approach contributes as a useful tool for the early detection of novel UPP inhibitors for the treatment of the multiple myeloma and related diseases. A dataset of 705 compounds was extracted from PubChem, with 258 active and 447 non-active compounds in ubiquitin-proteasome pathway inhibitory activity. Later this dataset was divided in training and set, consisting of 529 and 176 compounds, respectively. The quality of the QSAR models developed was proved using the validation set and also checking the applicability domain.

4 citations

Journal ArticleDOI
01 Dec 2022-Toxics
TL;DR: In this article , a dataset of more than 200 nitroaromatic compounds is used to develop Quantitative Structure-Activity Relationship (QSAR) models for the estimation of in vivo toxicity based on 50% lethal dose to rats (LD50).
Abstract: In this work, a dataset of more than 200 nitroaromatic compounds is used to develop Quantitative Structure–Activity Relationship (QSAR) models for the estimation of in vivo toxicity based on 50% lethal dose to rats (LD50). An initial set of 4885 molecular descriptors was generated and applied to build Support Vector Regression (SVR) models. The best two SVR models, SVR_A and SVR_B, were selected to build an Ensemble Model by means of Multiple Linear Regression (MLR). The obtained Ensemble Model showed improved performance over the base SVR models in the training set (R2 = 0.88), validation set (R2 = 0.95), and true external test set (R2 = 0.92). The models were also internally validated by 5-fold cross-validation and Y-scrambling experiments, showing that the models have high levels of goodness-of-fit, robustness and predictivity. The contribution of descriptors to the toxicity in the models was assessed using the Accumulated Local Effect (ALE) technique. The proposed approach provides an important tool to assess toxicity of nitroaromatic compounds, based on the ensemble QSAR model and the structural relationship to toxicity by analyzed contribution of the involved descriptors.

4 citations

Journal Article
TL;DR: The achieved results demonstrated that, the atom-based quadratic indices could provide an attractive alternative to the experiments currently used for determining toxicity, which are costly and time-consuming.
Abstract: BACKGROUND Many QSAR studies have been developed to predict acute toxicity over several biomarkers like Pimephales promelas, Daphnia magna and Tetrahymena pyriformis. Regardless of the progress made in this field there are still some gaps to be resolved such as the prediction of aquatic toxicity over the protozoan T. pyriformis still lack a QSAR study focused in accomplish the OECD principles. METHODS Atom-based quadratic indices are used to obtain quantitative structure-activity relationship (QSAR) models for the prediction of aquatic toxicity. Our models agree with the principles required by the OECD for QSAR models to regulatory purposes. The database employed consists of 392 substituted benzenes with toxicity values measured in T. pyriformis (defined endpoint), was divided using cluster analysis in two series (training and test sets). RESULTS We obtain (with an unambiguous algorithm) two good multiple linear regression models for non-stochastic (R2=0.807 and s=0.334) and stochastic (R2=0.817 and s=0.321), quadratic indices. The models were internally validated using leave-one-out, bootstrapping as well as Y-scrambling experiments. We also perform an external validation using the test set, achieving values of R2 pred values of 0.754 and 0.760, showing that our models have appropriate measures of goodness- of-fit, robustness and predictivity. Moreover, we define a domain of applicability for our best models. CONCLUSION The achieved results demonstrated that, the atom-based quadratic indices could provide an attractive alternative to the experiments currently used for determining toxicity, which are costly and time-consuming.

3 citations

Journal ArticleDOI
01 Jan 2019
TL;DR: In this review, the recent advances in the conjunction of machine learning with nanomedicine are shown; examples dealing with biomedical properties of nanoparticles, characterization of nanomaterials, text mining, and image analysis are presented.
Abstract: The development of machine learning algorithms together with the availability of computational tools nowadays have given an increase in the application of artificial intelligence methodologies in different fields. However, the use of these machine learning approaches in nanomedicine remains still underexplored in certain areas, despite the development in hardware and software tools. In this review, the recent advances in the conjunction of machine learning with nanomedicine are shown. Examples dealing with biomedical properties of nanoparticles, characterization of nanomaterials, text mining, and image analysis are also presented. Finally, some future perspectives in the integration of nanomedicine with cloud computing, deep learning and other techniques are discussed.

3 citations


Cited by
More filters
Journal Article
TL;DR: This volume is keyed to high resolution electron microscopy, which is a sophisticated form of structural analysis, but really morphology in a modern guise, the physical and mechanical background of the instrument and its ancillary tools are simply and well presented.
Abstract: I read this book the same weekend that the Packers took on the Rams, and the experience of the latter event, obviously, colored my judgment. Although I abhor anything that smacks of being a handbook (like, \"How to Earn a Merit Badge in Neurosurgery\") because too many volumes in biomedical science already evince a boyscout-like approach, I must confess that parts of this volume are fast, scholarly, and significant, with certain reservations. I like parts of this well-illustrated book because Dr. Sj6strand, without so stating, develops certain subjects on technique in relation to the acquisition of judgment and sophistication. And this is important! So, given that the author (like all of us) is somewhat deficient in some areas, and biased in others, the book is still valuable if the uninitiated reader swallows it in a general fashion, realizing full well that what will be required from the reader is a modulation to fit his vision, propreception, adaptation and response, and the kind of problem he is undertaking. A major deficiency of this book is revealed by comparison of its use of physics and of chemistry to provide understanding and background for the application of high resolution electron microscopy to problems in biology. Since the volume is keyed to high resolution electron microscopy, which is a sophisticated form of structural analysis, but really morphology in a modern guise, the physical and mechanical background of The instrument and its ancillary tools are simply and well presented. The potential use of chemical or cytochemical information as it relates to biological fine structure , however, is quite deficient. I wonder when even sophisticated morphol-ogists will consider fixation a reaction and not a technique; only then will the fundamentals become self-evident and predictable and this sine qua flon will become less mystical. Staining reactions (the most inadequate chapter) ought to be something more than a technique to selectively enhance contrast of morphological elements; it ought to give the structural addresses of some of the chemical residents of cell components. Is it pertinent that auto-radiography gets singled out for more complete coverage than other significant aspects of cytochemistry by a high resolution microscopist, when it has a built-in minimal error of 1,000 A in standard practice? I don't mean to blind-side (in strict football terminology) Dr. Sj6strand's efforts for what is \"routinely used in our laboratory\"; what is done is usually well done. It's just that …

3,197 citations

Journal ArticleDOI
TL;DR: An in depth review of rare event detection from an imbalanced learning perspective and a comprehensive taxonomy of the existing application domains of im balanced learning are provided.
Abstract: 527 articles related to imbalanced data and rare events are reviewed.Viewing reviewed papers from both technical and practical perspectives.Summarizing existing methods and corresponding statistics by a new taxonomy idea.Categorizing 162 application papers into 13 domains and giving introduction.Some opening questions are discussed at the end of this manuscript. Rare events, especially those that could potentially negatively impact society, often require humans decision-making responses. Detecting rare events can be viewed as a prediction task in data mining and machine learning communities. As these events are rarely observed in daily life, the prediction task suffers from a lack of balanced data. In this paper, we provide an in depth review of rare event detection from an imbalanced learning perspective. Five hundred and seventeen related papers that have been published in the past decade were collected for the study. The initial statistics suggested that rare events detection and imbalanced learning are concerned across a wide range of research areas from management science to engineering. We reviewed all collected papers from both a technical and a practical point of view. Modeling methods discussed include techniques such as data preprocessing, classification algorithms and model evaluation. For applications, we first provide a comprehensive taxonomy of the existing application domains of imbalanced learning, and then we detail the applications for each category. Finally, some suggestions from the reviewed papers are incorporated with our experiences and judgments to offer further research directions for the imbalanced learning and rare event detection fields.

1,448 citations

Journal ArticleDOI
TL;DR: Computer-aided drug discovery/design methods have played a major role in the development of therapeutically important small molecules for over three decades and theory behind the most important methods and recent successful applications are discussed.
Abstract: Computer-aided drug discovery/design methods have played a major role in the development of therapeutically important small molecules for over three decades. These methods are broadly classified as either structure-based or ligand-based methods. Structure-based methods are in principle analogous to high-throughput screening in that both target and ligand structure information is imperative. Structure-based approaches include ligand docking, pharmacophore, and ligand design methods. The article discusses theory behind the most important methods and recent successful applications. Ligand-based methods use only ligand information for predicting activity depending on its similarity/dissimilarity to previously known active ligands. We review widely used ligand-based methods such as ligand-based pharmacophores, molecular descriptors, and quantitative structure-activity relationships. In addition, important tools such as target/ligand data bases, homology modeling, ligand fingerprint methods, etc., necessary for successful implementation of various computer-aided drug discovery/design methods in a drug discovery campaign are discussed. Finally, computational methods for toxicity prediction and optimization for favorable physiologic properties are discussed with successful examples from literature.

1,362 citations

Journal ArticleDOI
TL;DR: The more recent reports on polyphenol oxidase in plants and fungi are reviewed and many details about structure and probably function of PPO have been revealed, but some of the basic questions raised over the years remain to be answered.

938 citations