scispace - formally typeset
Search or ask a question
Author

Gerardo Suárez

Bio: Gerardo Suárez is an academic researcher from National Autonomous University of Mexico. The author has contributed to research in topics: Subduction & Aftershock. The author has an hindex of 33, co-authored 86 publications receiving 4158 citations. Previous affiliations of Gerardo Suárez include Massachusetts Institute of Technology & Columbia University.


Papers
More filters
Journal ArticleDOI
01 Sep 1989-Nature
TL;DR: In this article, the authors used regional patterns of present-day tectonic stress to evaluate the forces acting on the lithosphere and to investigate intraplate seismicity, and found that most intraplate regions are characterized by a compressional stress regime; extension is limited almost entirely to thermally uplifted regions.
Abstract: Regional patterns of present-day tectonic stress can be used to evaluate the forces acting on the lithosphere and to investigate intraplate seismicity. Most intraplate regions are characterized by a compressional stress regime; extension is limited almost entirely to thermally uplifted regions. In several plates the maximum horizontal stress is subparallel to the direction of absolute plate motion, suggesting that the forces driving the plates also dominate the stress distribution in the plate interior.

587 citations

Journal ArticleDOI
TL;DR: The geometry of the subducted Rivera and Cocos plates beneath the North American plate in southern Mexico was determined based on accurately located hypocenters of local and teleseismic earthquakes.
Abstract: The geometry of the subducted Rivera and Cocos plates beneath the North American plate in southern Mexico was determined based on the accurately located hypocenters of local and teleseismic earthquakes. The hypocenters of the teleseisms were relocated, and the focal depths of 21 events were constrained using a body wave inversion scheme. The suduction in southern Mexico may be approximated as a subhorizontal slab bounded at the edges by the steep subduction geometry of the Cocos plate beneath the Caribbean plate to the east and of the Rivera plate beneath North America to the west. The dip of the interplate contact geometry is constant to a depth of 30 km, and lateral changes in the dip of the subducted plate are only observed once it is decoupled from the overriding plate. On the basis of the seismicity, the focal mechanisms, and the geometry of the downgoing slab, southern Mexico may be segmented into four regions : (1) the Jalisco region to the west, where the Rivera plate subducts at a steep angle that resembles the geometry of the Cocos plate beneath the Caribbean plate in Central America ; (2) the Michoacan region, where the dip angle of the Cocos plate decreases gradually toward the southeast, (3) the Guerrero-Oaxaca region, bounded approximately by the onshore projection of the Orozco and O'Gorman fracture zones, where the subducted slab is almost subhorizontal and underplates the upper continental plate for about 250 km, and (4) the southern Oaxaca and Chiapas region, in southeastern Mexico, where the dip of the subduction gradually increases to a steeper subduction in Central America. These drastic changes in dip do not appear to take place on tear faults, suggesting that smooth contortions accommodate these changes in geometry. The inferred 80 and 100 km depth contours of the subducted slab lie beneath the southern front of the Trans-Mexican Volcanic Belt, suggesting it is directly related to the subduction. Thus the observed nonparallelism with the Middle American Trench is apparently due to the changing geometry of the Rivera and Cocos plates beneath the North American plate in southern Mexico, and not to zones of weakness in the crust of the North American plate as some authors have suggested.

579 citations

Journal ArticleDOI
04 Dec 1997-Nature
TL;DR: In this paper, the Chicxulub impact in Mexico has been linked to the mass extinction of species at the end of the Cretaceous period, and the diameter of the transient cavity is determined to be about 100 km.
Abstract: The Chicxulub impact in Mexico has been linked to the mass extinction of species at the end of the Cretaceous period. From seismic data collected across the offshore portion of the impact crater, the diameter of the transient cavity is determined to be about 100 km. This parameter is critical for constraining impact-related effects on the Cretaceous environment, with previous estimates of the cavity diameter spanning an order of magnitude in impact energy. The offshore seismic data indicate that the Chicxulub crater has a multi-ring basin morphology, similar to large impact structures observed on other planets, such as Venus.

243 citations

Journal ArticleDOI
TL;DR: In this article, the long-period P waveforms observed for 17 earthquakes in the Peruvian Andes during 1963-1976 are compared with synthetic waveforms to obtain fault-plane solutions and focal depths.
Abstract: The long-period P waveforms observed for 17 earthquakes in the Peruvian Andes during 1963-1976 are compared with synthetic waveforms to obtain fault-plane solutions and focal depths. The morphological units of the Peruvian Andes are characterized: coastal plains, Cordillera Occidental, altiplano and central high plateau, Cordillera Oriental, and sub-Andes. The data base and analysis methodology are discussed, and the results are presented in tables, diagrams, graphs, maps, and photographs illustrating typical formations. Most of the earthquakes are shown to occur in the transition zone from the sub-Andes to the Cordillera Oriental under formations of about 1 km elevation at focal depths of 10-38 km. It is suggested that the sub-Andean earthquakes reflect hinterland deformation of a detached fold and thrust belt, perhaps like that which occurred in parts of the Canadian Rockies. From the total crustal shortening evident in Andean morphology and the shortening rate of the recent earthquakes it is estimated that the topography and crustal root of the Andes have been formed during the last 90-135 Myr.

240 citations

Journal ArticleDOI
TL;DR: In this article, the configuration of the Pacific plate subducted beneath the Kamchatka peninsula and the stress distribution in the subduction zone (KSZ) were studied using the catalog of the KamCHATKA regional seismic network, focal mechanism solutions estimated from P wave first motions, the formal inversion of long-period waveforms, and centroid moment tensor solutions.
Abstract: The configuration of the Pacific plate subducted beneath the Kamchatka peninsula and the stress distribution in the Kamchatka subduction zone (KSZ) were studied using the catalog of the Kamchatka regional seismic network, focal mechanism solutions estimated from P wave first motions, the formal inversion of long-period waveforms, and centroid moment tensor solutions. To the south of ∼55°N, the slab shows an approximately constant dip angle of ∼55°. To the north of ∼55°N, the dip of the slab becomes shallower reaching ∼35°. The maximum depth of seismicity, Dm, varies from ∼500 km depth near 50°N to ∼300 km depth at ∼55°N. The volcanic front is almost linear along the main part of the KSZ whereas it is sharply shifted landward to the north of ∼55°N. The variation of Dm is apparently consistent with the standard empirical relation Dm=ƒ(ϕ), where ϕ is the thermal parameter of the subducted slab. To the north of ∼55°N, the slab is offset toward the northwest, and it is sharply deformed in a narrow contorted zone which is ∼30 km wide (∼56°N, ∼161°E). To the north of this contortion, Dm decreases to ∼100 km. The landward shift of the northern part of the slab is reflected by a sharp deviation of the volcanic front to the northwest which follows the ∼90–160 km isodepth range of the subducted slab. The observed value of Dm in the northern segment significantly diverges from the global relation Dm=ƒ(ϕ). We interpret this as an effective decrease of the thermal thickness of the subducted lithosphere.

180 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, a series of empirical relationships among moment magnitude (M ), surface rupture length, subsurface rupture length and downdip rupture width, and average surface displacement per event are developed.
Abstract: Source parameters for historical earthquakes worldwide are compiled to develop a series of empirical relationships among moment magnitude ( M ), surface rupture length, subsurface rupture length, downdip rupture width, rupture area, and maximum and average displacement per event. The resulting data base is a significant update of previous compilations and includes the additional source parameters of seismic moment, moment magnitude, subsurface rupture length, downdip rupture width, and average surface displacement. Each source parameter is classified as reliable or unreliable, based on our evaluation of the accuracy of individual values. Only the reliable source parameters are used in the final analyses. In comparing source parameters, we note the following trends: (1) Generally, the length of rupture at the surface is equal to 75% of the subsurface rupture length; however, the ratio of surface rupture length to subsurface rupture length increases with magnitude; (2) the average surface displacement per event is about one-half the maximum surface displacement per event; and (3) the average subsurface displacement on the fault plane is less than the maximum surface displacement but more than the average surface displacement. Thus, for most earthquakes in this data base, slip on the fault plane at seismogenic depths is manifested by similar displacements at the surface. Log-linear regressions between earthquake magnitude and surface rupture length, subsurface rupture length, and rupture area are especially well correlated, showing standard deviations of 0.25 to 0.35 magnitude units. Most relationships are not statistically different (at a 95% significance level) as a function of the style of faulting: thus, we consider the regressions for all slip types to be appropriate for most applications. Regressions between magnitude and displacement, magnitude and rupture width, and between displacement and rupture length are less well correlated and have larger standard deviation than regressions between magnitude and length or area. The large number of data points in most of these regressions and their statistical stability suggest that they are unlikely to change significantly in response to additional data. Separating the data according to extensional and compressional tectonic environments neither provides statistically different results nor improves the statistical significance of the regressions. Regressions for cases in which earthquake magnitude is either the independent or the dependent parameter can be used to estimate maximum earthquake magnitudes both for surface faults and for subsurface seismic sources such as blind faults, and to estimate the expected surface displacement along a fault for a given size earthquake.

6,160 citations

Book
25 Jan 1991
TL;DR: The connection between faults and the seismicity generated is governed by the rate and state dependent friction laws -producing distinctive seismic styles of faulting and a gamut of earthquake phenomena including aftershocks, afterslip, earthquake triggering, and slow slip events.
Abstract: This essential reference for graduate students and researchers provides a unified treatment of earthquakes and faulting as two aspects of brittle tectonics at different timescales. The intimate connection between the two is manifested in their scaling laws and populations, which evolve from fracture growth and interactions between fractures. The connection between faults and the seismicity generated is governed by the rate and state dependent friction laws - producing distinctive seismic styles of faulting and a gamut of earthquake phenomena including aftershocks, afterslip, earthquake triggering, and slow slip events. The third edition of this classic treatise presents a wealth of new topics and new observations. These include slow earthquake phenomena; friction of phyllosilicates, and at high sliding velocities; fault structures; relative roles of strong and seismogenic versus weak and creeping faults; dynamic triggering of earthquakes; oceanic earthquakes; megathrust earthquakes in subduction zones; deep earthquakes; and new observations of earthquake precursory phenomena.

3,802 citations

Journal ArticleDOI
TL;DR: A global plate motion model, named NUVEL-1, which describes current plate motions between 12 rigid plates is described, with special attention given to the method, data, and assumptions used as discussed by the authors.
Abstract: A global plate motion model, named NUVEL-1, which describes current plate motions between 12 rigid plates is described, with special attention given to the method, data, and assumptions used Tectonic implications of the patterns that emerged from the results are discussed It is shown that wide plate boundary zones can form not only within the continental lithosphere but also within the oceanic lithosphere; eg, between the Indian and Australian plates and between the North American and South American plates Results of the model also suggest small but significant diffuse deformation of the oceanic lithosphere, which may be confined to small awkwardly shaped salients of major plates

3,409 citations

01 Jan 1988
TL;DR: In this paper, a new global model (NUVEL-1) was proposed to describe the geologically current motion between 12 assumed-rigid plates by inverting plate motion data.
Abstract: SUMMARY We determine best-fitting Euler vectors, closure-fitting Euler vectors, and a new global model (NUVEL-1) describing the geologically current motion between 12 assumed-rigid plates by inverting plate motion data we have compiled, critically analysed, and tested for self-consistency. We treat Arabia, India and Australia, and North America and South America as distinct plates, but combine Nubia and Somalia into a single African plate because motion between them could not be reliably resolved. The 1122 data from 22 plate boundaries inverted to obtain NUVEL-1 consist of 277 spreading rates, 121 transform fault azimuths, and 724 earthquake slip vectors. We determined all rates over a uniform time interval of 3.0m.y., corresponding to the centre of the anomaly 2A sequence, by comparing synthetic magnetic anomalies with observed profiles. The model fits the data well. Unlike prior global plate motion models, which systematically misfit some spreading rates in the Indian Ocean by 8–12mm yr−1, the systematic misfits by NUVEL-1 nowhere exceed ∼3 mm yr−1. The model differs significantly from prior global plate motion models. For the 30 pairs of plates sharing a common boundary, 29 of 30 P071, and 25 of 30 RM2 Euler vectors lie outside the 99 per cent confidence limits of NUVEL-1. Differences are large in the Indian Ocean where NUVEL-1 plate motion data and plate geometry differ from those used in prior studies and in the Pacific Ocean where NUVEL-1 rates are systematically 5–20 mm yr−1 slower than those of prior models. The strikes of transform faults mapped with GLORIA and Seabeam along the Mid-Atlantic Ridge greatly improve the accuracy of estimates of the direction of plate motion. These data give Euler vectors differing significantly from those of prior studies, show that motion about the Azores triple junction is consistent with plate circuit closure, and better resolve motion between North America and South America. Motion of the Caribbean plate relative to North or South America is about 7 mm yr−1 slower than in prior global models. Trench slip vectors tend to be systematically misfit wherever convergence is oblique, and best-fitting poles determined only from trench slip vectors differ significantly from their corresponding closure-fitting Euler vectors. The direction of slip in trench earthquakes tends to be between the direction of plate motion and the normal to the trench strike. Part of this bias may be due to the neglect of lateral heterogeneities of seismic velocities caused by cold subducting slabs, but the larger part is likely caused by independent motion of fore-arc crust and lithosphere relative to the overriding plate.

3,328 citations

Journal ArticleDOI
TL;DR: MORVEL as discussed by the authors is a new closure-enforced set of angular velocities for the geologically current motions of 25 tectonic plates that collectively occupy 97 per cent of Earth's surface.
Abstract: SUMMARY We describe best-fitting angular velocities and MORVEL, a new closure-enforced set of angular velocities for the geologically current motions of 25 tectonic plates that collectively occupy 97 per cent of Earth's surface. Seafloor spreading rates and fault azimuths are used to determine the motions of 19 plates bordered by mid-ocean ridges, including all the major plates. Six smaller plates with little or no connection to the mid-ocean ridges are linked to MORVEL with GPS station velocities and azimuthal data. By design, almost no kinematic information is exchanged between the geologically determined and geodetically constrained subsets of the global circuit—MORVEL thus averages motion over geological intervals for all the major plates. Plate geometry changes relative to NUVEL-1A include the incorporation of Nubia, Lwandle and Somalia plates for the former Africa plate, Capricorn, Australia and Macquarie plates for the former Australia plate, and Sur and South America plates for the former South America plate. MORVEL also includes Amur, Philippine Sea, Sundaland and Yangtze plates, making it more useful than NUVEL-1A for studies of deformation in Asia and the western Pacific. Seafloor spreading rates are estimated over the past 0.78 Myr for intermediate and fast spreading centres and since 3.16 Ma for slow and ultraslow spreading centres. Rates are adjusted downward by 0.6–2.6 mm yr−1 to compensate for the several kilometre width of magnetic reversal zones. Nearly all the NUVEL-1A angular velocities differ significantly from the MORVEL angular velocities. The many new data, revised plate geometries, and correction for outward displacement thus significantly modify our knowledge of geologically current plate motions. MORVEL indicates significantly slower 0.78-Myr-average motion across the Nazca–Antarctic and Nazca–Pacific boundaries than does NUVEL-1A, consistent with a progressive slowdown in the eastward component of Nazca plate motion since 3.16 Ma. It also indicates that motions across the Caribbean–North America and Caribbean–South America plate boundaries are twice as fast as given by NUVEL-1A. Summed, least-squares differences between angular velocities estimated from GPS and those for MORVEL, NUVEL-1 and NUVEL-1A are, respectively, 260 per cent larger for NUVEL-1 and 50 per cent larger for NUVEL-1A than for MORVEL, suggesting that MORVEL more accurately describes historically current plate motions. Significant differences between geological and GPS estimates of Nazca plate motion and Arabia–Eurasia and India–Eurasia motion are reduced but not eliminated when using MORVEL instead of NUVEL-1A, possibly indicating that changes have occurred in those plate motions since 3.16 Ma. The MORVEL and GPS estimates of Pacific–North America plate motion in western North America differ by only 2.6 ± 1.7 mm yr−1, ≈25 per cent smaller than for NUVEL-1A. The remaining difference for this plate pair, assuming there are no unrecognized systematic errors and no measurable change in Pacific–North America motion over the past 1–3 Myr, indicates deformation of one or more plates in the global circuit. Tests for closure of six three-plate circuits indicate that two, Pacific–Cocos–Nazca and Sur–Nubia–Antarctic, fail closure, with respective linear velocities of non-closure of 14 ± 5 and 3 ± 1 mm yr−1 (95 per cent confidence limits) at their triple junctions. We conclude that the rigid plate approximation continues to be tremendously useful, but—absent any unrecognized systematic errors—the plates deform measurably, possibly by thermal contraction and wide plate boundaries with deformation rates near or beneath the level of noise in plate kinematic data.

2,089 citations