scispace - formally typeset
Search or ask a question
Author

Gerd G. Gauglitz

Bio: Gerd G. Gauglitz is an academic researcher from Ludwig Maximilian University of Munich. The author has contributed to research in topics: Scars & Keloid. The author has an hindex of 25, co-authored 107 publications receiving 3290 citations. Previous affiliations of Gerd G. Gauglitz include University of Texas Medical Branch & Praxis.
Topics: Scars, Keloid, Wound healing, Burn injury, Medicine


Papers
More filters
Journal ArticleDOI
TL;DR: The current understanding of the pathophysiology underlying keloid and hypertrophic scar formation is summarized and established treatments and novel therapeutic strategies are discussed.
Abstract: Excessive scars form as a result of aberrations of physiologic wound healing and may arise following any Insult to the deep dermis. By causing pain, pruritus and contractures, excessive scarring significantly affects the patient’s quality of life, both physically and psychologically. Multiple studies on hypertrophic scar and keloid formation have been conducted for decades and have led to a plethora of therapeutic strategies to prevent or attenuate excessive scar formation. However, most therapeutic approaches remain clinically unsatisfactory, most likely owing to poor understanding of the complex mechanisms underlying the processes of scarring and wound contraction. In this review we summarize the current understanding of the pathophysiology underlying keloid and hypertrophic scar formation and discuss established treatments and novel therapeutic strategies.

1,075 citations

Journal ArticleDOI
18 Jul 2011-PLOS ONE
TL;DR: Severe burn injury leads to a much more profound and prolonged hypermetabolic and hyperinflammatory response than previously shown, and treatment needs for severely burned patients for a muchMore prolonged time are identified.
Abstract: Background Main contributors to adverse outcomes in severely burned pediatric patients are profound and complex metabolic changes in response to the initial injury. It is currently unknown how long these conditions persist beyond the acute phase post-injury. The aim of the present study was to examine the persistence of abnormalities of various clinical parameters commonly utilized to assess the degree hypermetabolic and inflammatory alterations in severely burned children for up to three years post-burn to identify patient specific therapeutic needs and interventions.

456 citations

Journal ArticleDOI
01 Nov 2014-Burns
TL;DR: The main aim of this review paper is to offer a useful up-to-date guideline to prevent and treat keloids and hypertrophic scars.

263 citations

Journal ArticleDOI
TL;DR: Emerging techniques such as intralesional cryotherapy, intralsional 5-fluorouracil, interferon, and bleomycin are discussed, which have been successfully tested in well-designed trials and already have extended or may extend the current spectrum of excessive scar treatment in the near future.
Abstract: In the context of growing aesthetic awareness, a rising number of patients feel disappointed with their scars and are frequently seeking help for functional and aesthetic improvement. However, excessive scarring following surgery or trauma remains difficult to improve despite a plethora of advocated treatment strategies as frequently observed in daily clinical routine. It is thus still preferable to prevent scarring by minimizing risk factors as much as possible. Hence, it remains crucial for the physician to be aware of basic knowledge of healing mechanisms and skin anatomy, as well as an appreciation of suture material and wound closure techniques to minimize the risk of postoperative scarring. Next to existing, well known prophylactic and therapeutic strategies for the improvement of excessive scarring, this article discusses emerging techniques such as intralesional cryotherapy, intralesional 5-fluorouracil, interferon, and bleomycin. Some of them have been successfully tested in well-designed trials and already have extended or may extend the current spectrum of excessive scar treatment in the near future. Innovative options such as imiquimod 5% cream, photodynamic therapy, or botulinum toxin A may also be of certain importance; however, the data currently available is too contradictory for definite recommendations.

194 citations

Journal ArticleDOI
TL;DR: The subamniotic MSCs isolated by this method are distinct from embryonic SCs and do not show tumorigenicity in vitro, but also showed several specific features.
Abstract: The use of human stem cells (SCs) is a promising novel approach for the treatment of many diseases and injuries. Umbilical cord and amniotic membrane represent good sources for SCs, because they are abundant sources and there are less ethical issues unlike embryonic SCs. We aimed to isolate and characterize adult SCs from the subamnion region of the umbilical cord/amniotic membrane. Because mesenchymal stem cells (MSCs) are thought to show less immunogenicity, we first focused on the characterization of MSCs. Significant expression of typical SC-specific markers, such as SSEA-4, Oct-4, and Nanog was observed. Subamniotic MSCs did not lose the expression of Oct-4 and Nanog after freeze-thawing. Cell surface expression of MSC markers (CD73 and CD105) was confirmed by flow cytometry, and cells also differentiated into adipogenic, osteogenic, and chondrogenic lineages. On the other hand, typical embryonic SC-specific markers were not expressed and the cells also did not grow in soft agar. Thus, the subamnioti...

172 citations


Cited by
More filters
Journal Article

[...]

1,682 citations

Journal ArticleDOI
TL;DR: Recent research findings in the area of hMSCs sources, expression of cell surface markers, long-term in vitro culturing, in vitro differentiation potential, immunomodulatory features, its homing capacity, banking and cryopreservation, its application in the treatment of chronic diseases and its use in clinical trials are highlighted.
Abstract: Stem cells are cells specialized cell, capable of renewing themselves through cell division and can differentiate into multi-lineage cells. These cells are categorized as embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs) and adult stem cells. Mesenchymal stem cells (MSCs) are adult stem cells which can be isolated from human and animal sources. Human MSCs (hMSCs) are the non-haematopoietic, multipotent stem cells with the capacity to differentiate into mesodermal lineage such as osteocytes, adipocytes and chondrocytes as well ectodermal (neurocytes) and endodermal lineages (hepatocytes). MSCs express cell surface markers like cluster of differentiation (CD)29, CD44, CD73, CD90, CD105 and lack the expression of CD14, CD34, CD45 and HLA (human leucocyte antigen)-DR. hMSCs for the first time were reported in the bone marrow and till now they have been isolated from various tissues, including adipose tissue, amniotic fluid, endometrium, dental tissues, umbilical cord and Wharton's jelly which harbours potential MSCs. hMSCs have been cultured long-term in specific media without any severe abnormalities. Furthermore, MSCs have immunomodulatory features, secrete cytokines and immune-receptors which regulate the microenvironment in the host tissue. Multilineage potential, immunomodulation and secretion of anti-inflammatory molecules makes MSCs an effective tool in the treatment of chronic diseases. In the present review, we have highlighted recent research findings in the area of hMSCs sources, expression of cell surface markers, long-term in vitro culturing, in vitro differentiation potential, immunomodulatory features, its homing capacity, banking and cryopreservation, its application in the treatment of chronic diseases and its use in clinical trials.

957 citations

Journal ArticleDOI
TL;DR: This review covers technical aspects of tES, as well as applications like exploration of brain physiology, modelling approaches, tES in cognitive neurosciences, and interventional approaches to help the reader to appropriately design and conduct studies involving these brain stimulation techniques.

942 citations

Journal ArticleDOI
TL;DR: This review will focus on the components of the ECM and their role in both physiological and pathological (hypertrophic and keloid) cutaneous scar formation.
Abstract: Significance: When a cutaneous injury occurs, the wound heals via a dynamic series of physiological events, including coagulation, granulation tissue formation, re-epithelialization, and extracellular matrix (ECM) remodeling. The final stage can take many months, yet the new ECM forms a scar that never achieves the flexibility or strength of the original tissue. In certain circumstances, the normal scar is replaced by pathological fibrotic tissue, which results in hypertrophic or keloid scars. These scars cause significant morbidity through physical dysfunction and psychological stress. Recent Advances and Critical Issues: The cutaneous ECM comprises a complex assortment of proteins that was traditionally thought to simply provide structural integrity and scaffolding characteristics. However, recent findings show that the ECM has multiple functions, including, storage and delivery of growth factors and cytokines, tissue repair and various physiological functions. Abnormal ECM reconstruction during wound healing contributes to the formation of hypertrophic and keloid scars. Whereas adult wounds heal with scarring, the developing foetus has the ability to heal wounds in a scarless fashion by regenerating skin and restoring the normal ECM architecture, strength, and function. Recent studies show that the lack of inflammation in fetal wounds contributes to this perfect healing. Future Directions: Better understanding of the exact roles of ECM components in scarring will allow us to produce therapeutic agents to prevent hypertrophic and keloid scars. This review will focus on the components of the ECM and their role in both physiological and pathological (hypertrophic and keloid) cutaneous scar formation.

879 citations