scispace - formally typeset
Search or ask a question
Author

Gerhard Gerold

Bio: Gerhard Gerold is an academic researcher from University of Göttingen. The author has contributed to research in topics: Deforestation & Land use. The author has an hindex of 24, co-authored 77 publications receiving 1975 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: It is concluded that low-shade agroforestry provides the best available compromise between economic forces and ecological needs, and Certification schemes for shade-grown crops may provide a market-based mechanism to slow down current intensification trends.
Abstract: Losses of biodiversity and ecosystem functioning due to rainforest destruction and agricultural intensification are prime concerns for science and society alike. Potentially, ecosystems show nonlinear responses to land-use intensification that would open management options with limited ecological losses but satisfying economic gains. However, multidisciplinary studies to quantify ecological losses and socioeconomic tradeoffs under different management options are rare. Here, we evaluate opposing land use strategies in cacao agroforestry in Sulawesi, Indonesia, by using data on species richness of nine plant and animal taxa, six related ecosystem functions, and on socioeconomic drivers of agroforestry expansion. Expansion of cacao cultivation by 230% in the last two decades was triggered not only by economic market mechanisms, but also by rarely considered cultural factors. Transformation from near-primary forest to agroforestry had little effect on overall species richness, but reduced plant biomass and carbon storage by ≈75% and species richness of forest-using species by ≈60%. In contrast, increased land use intensity in cacao agroforestry, coupled with a reduction in shade tree cover from 80% to 40%, caused only minor quantitative changes in biodiversity and maintained high levels of ecosystem functioning while doubling farmers' net income. However, unshaded systems further increased income by ≈40%, implying that current economic incentives and cultural preferences for new intensification practices put shaded systems at risk. We conclude that low-shade agroforestry provides the best available compromise between economic forces and ecological needs. Certification schemes for shade-grown crops may provide a market-based mechanism to slow down current intensification trends.

472 citations

Journal ArticleDOI
TL;DR: In this paper, the applicability of stated preference methods for the valuation of ecosystem functions is a matter of debate, and the authors argue that the recognition of this principle is the key also for the application of stated preferences in the context of environmental valuation.

170 citations

Journal ArticleDOI
01 Sep 2001-Geoderma
TL;DR: In this paper, the surface fractal dimension of the pore-solid interface was measured by fitting two straight lines to the log-log plot and finding a crossover point at a scale of about 14 μm, forming the border between textural and structural fractality.

166 citations

Journal ArticleDOI
TL;DR: In this article, the authors used a spatially explicit multinomial logit model to analyze the determinants of each of these proximate causes of deforestation between 1992 and 2004 and found that the largest share of deforestation is attributable to the expansion of mechanized agriculture, followed by cattle ranching and small-scale agriculture.
Abstract: Forests in lowland Bolivia suffer from severe deforestation caused by different types of agents and land use activities. We identify three major proximate causes of deforestation. The largest share of deforestation is attributable to the expansion of mechanized agriculture, followed by cattle ranching and small-scale agriculture. We utilize a spatially explicit multinomial logit model to analyze the determinants of each of these proximate causes of deforestation between 1992 and 2004. We substantiate the quantitative insights with a qualitative analysis of historical processes that have shaped land use patterns in the Bolivian lowlands to date. Our results suggest that the expansion of mechanized agriculture occurs mainly in response to good access to export markets, fertile soil, and intermediate rainfall conditions. Increases in small-scale agriculture are mainly associated with a humid climate, fertile soil, and proximity to local markets. Forest conversion into pastures for cattle ranching occurs mostly irrespective of environmental determinants and can mainly be explained by access to local markets. Land use restrictions, such as protected areas, seem to prevent the expansion of mechanized agriculture but have little impact on the expansion of small-scale agriculture and cattle ranching. The analysis of future deforestation trends reveals possible hotspots of future expansion for each proximate cause and specifically highlights the possible opening of new frontiers for deforestation due to mechanized agriculture. Whereas the quantitative analysis effectively elucidates the spatial patterns of recent agricultural expansion, the interpretation of long-term historic drivers reveals that the timing and quantity of forest conversion are often triggered by political interventions and historical legacies.

102 citations

Book
10 Dec 2010
TL;DR: In this article, the authors highlight the critical issue of rainforest preservation from an interdisciplinary perspective, comprising input from scientists in socio-economic, biological, geographical, agrarian and forestry disciplines.
Abstract: This book contains a selection of contributions presented at an international symposium on "Land Use, Nature Conservation and the Stability of Rainforest Margins in Southeast Asia," in Bogor, Indonesia, October 2002. It highlights the critical issue of rainforest preservation from an interdisciplinary perspective, comprising input from scientists in socio-economic, biological, geographical, agrarian and forestry disciplines.

67 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The tradeoffs that may occur between provisioning services and other ecosystem services and disservices should be evaluated in terms of spatial scale, temporal scale and reversibility, and the potential for ‘win–win’ scenarios increases.
Abstract: Agricultural ecosystems provide humans with food, forage, bioenergy and pharmaceuticals and are essential to human wellbeing. These systems rely on ecosystem services provided by natural ecosystems, including pollination, biological pest control, maintenance of soil structure and fertility, nutrient cycling and hydrological services. Preliminary assessments indicate that the value of these ecosystem services to agriculture is enormous and often underappreciated. Agroecosystems also produce a variety of ecosystem services, such as regulation of soil and water quality, carbon sequestration, support for biodiversity and cultural services. Depending on management practices, agriculture can also be the source of numerous disservices, including loss of wildlife habitat, nutrient runoff, sedimentation of waterways, greenhouse gas emissions, and pesticide poisoning of humans and non-target species. The tradeoffs that may occur between provisioning services and other ecosystem services and disservices should be evaluated in terms of spatial scale, temporal scale and reversibility. As more effective methods for valuing ecosystem services become available, the potential for ‘win–win’ scenarios increases. Under all scenarios, appropriate agricultural management practices are critical to realizing the benefits of ecosystem services and reducing disservices from agricultural activities.

1,732 citations

Journal ArticleDOI
TL;DR: This review uses knowledge gained from human‐modified landscapes to suggest eight hypotheses, which it hopes will encourage more systematic research on the role of landscape composition and configuration in determining the structure of ecological communities, ecosystem functioning and services.
Abstract: Understanding how landscape characteristics affect biodiversity patterns and ecological processes at local and landscape scales is critical for mitigating effects of global environmental change. In this review, we use knowledge gained from human-modified landscapes to suggest eight hypotheses, which we hope will encourage more systematic research on

1,513 citations

Journal ArticleDOI
TL;DR: In this article, the authors argue that the true value of functional biodiversity on the farm is often inadequately acknowledged or understood, while conventional intensification tends to disrupt beneficial functions of biodiversity.

1,463 citations

Posted ContentDOI
TL;DR: The wide spectrum of scientific applications of SAGA is highlighted in a review of published studies, with special emphasis on the core application areas digital terrain analysis, geomorphology, soil science, climatology and meteorology, as well as remote sensing.
Abstract: . The System for Automated Geoscientific Analyses (SAGA) is an open source geographic information system (GIS), mainly licensed under the GNU General Public License. Since its first release in 2004, SAGA has rapidly developed from a specialized tool for digital terrain analysis to a comprehensive and globally established GIS platform for scientific analysis and modeling. SAGA is coded in C++ in an object oriented design and runs under several operating systems including Windows and Linux. Key functional features of the modular software architecture comprise an application programming interface for the development and implementation of new geoscientific methods, a user friendly graphical user interface with many visualization options, a command line interpreter, and interfaces to interpreted languages like R and Python. The current version 2.1.4 offers more than 600 tools, which are implemented in dynamically loadable libraries or shared objects and represent the broad scopes of SAGA in numerous fields of geoscientific endeavor and beyond. In this paper, we inform about the system's architecture, functionality, and its current state of development and implementation. Furthermore, we highlight the wide spectrum of scientific applications of SAGA in a review of published studies, with special emphasis on the core application areas digital terrain analysis, geomorphology, soil science, climatology and meteorology, as well as remote sensing.

1,459 citations