scispace - formally typeset
Search or ask a question
Author

Gerhard Meyer

Bio: Gerhard Meyer is an academic researcher from IBM. The author has contributed to research in topics: Scanning tunneling microscope & Scanning probe microscopy. The author has an hindex of 58, co-authored 158 publications receiving 14532 citations. Previous affiliations of Gerhard Meyer include University of Regensburg & Free University of Berlin.


Papers
More filters
Journal ArticleDOI
28 Aug 2009-Science
TL;DR: Imaging of molecules with unprecedented atomic resolution is demonstrated by probing the short-range chemical forces with use of noncontact atomic force microscopy, and shows that Pauli repulsion is the source of the atomic resolution, whereas van der Waals and electrostatic forces only add a diffuse attractive background.
Abstract: Resolving individual atoms has always been the ultimate goal of surface microscopy. The scanning tunneling microscope images atomic-scale features on surfaces, but resolving single atoms within an adsorbed molecule remains a great challenge because the tunneling current is primarily sensitive to the local electron density of states close to the Fermi level. We demonstrate imaging of molecules with unprecedented atomic resolution by probing the short-range chemical forces with use of noncontact atomic force microscopy. The key step is functionalizing the microscope’s tip apex with suitable, atomically well-defined terminations, such as CO molecules. Our experimental findings are corroborated by ab initio density functional theory calculations. Comparison with theory shows that Pauli repulsion is the source of the atomic resolution, whereas van der Waals and electrostatic forces only add a diffuse attractive background.

1,483 citations

Journal ArticleDOI
TL;DR: In this article, a simple optical method for detecting the cantilever deflection in atomic force microscopy is described, and the method is incorporated in an atomic force microscope, and imaging and force measurements, in ultrahigh vacuum, are successfully performed.
Abstract: A sensitive and simple optical method for detecting the cantilever deflection in atomic force microscopy is described. The method was incorporated in an atomic force microscope, and imaging and force measurements, in ultrahigh vacuum, were successfully performed.

1,250 citations

Journal ArticleDOI
TL;DR: Ultrathin insulating NaCl films have been employed to decouple individual pentacene molecules electronically from the metallic substrate, which allows the inherent electronic structure of the free molecule to be preserved and studied by means of low-temperature scanning-tunneling microscopy.
Abstract: Ultrathin insulating NaCl films have been employed to decouple individual pentacene molecules electronically from the metallic substrate. This allows the inherent electronic structure of the free molecule to be preserved and studied by means of low-temperature scanning-tunneling microscopy. Thereby direct images of the unperturbed molecular orbitals of the individual pentacene molecules are obtained. Elastic scattering quantum chemistry calculations substantiate the experimental findings.

712 citations

Journal ArticleDOI
TL;DR: The procedures presented here constitute an important step towards the assembly of individual molecules out of simple building blocks in situ on the atomic scale.
Abstract: All elementary steps of a chemical reaction have been successfully induced on individual molecules with a scanning tunneling microscope (STM) in a controlled step-by-step manner utilizing a variety of manipulation techniques. The reaction steps involve the separation of iodine from iodobenzene by using tunneling electrons, bringing together two resultant phenyls mechanically by lateral manipulation and, finally, their chemical association to form a biphenyl molecule mediated by excitation with tunneling electrons. The procedures presented here constitute an important step towards the assembly of individual molecules out of simple building blocks in situ on the atomic scale.

662 citations

Journal ArticleDOI
31 Aug 2007-Science
TL;DR: A coupling of the switching process so that the charge injection in one molecule induced tautomerization in an adjacent molecule is demonstrated.
Abstract: The bistability in the position of the two hydrogen atoms in the inner cavity of single free-base naphthalocyanine molecules constitutes a two-level system that was manipulated and probed by low-temperature scanning tunneling microscopy. When adsorbed on an ultrathin insulating film, the molecules can be switched in a controlled fashion between the two states by excitation induced by the inelastic tunneling current. The tautomerization reaction can be probed by resonant tunneling through the molecule and is expressed as considerable changes in the conductivity of the molecule. We also demonstrated a coupling of the switching process so that the charge injection in one molecule induced tautomerization in an adjacent molecule.

627 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The creation, maintenance, information content and availability of the Cambridge Structural Database (CSD), the world’s repository of small molecule crystal structures, are described.
Abstract: The Cambridge Structural Database (CSD) contains a complete record of all published organic and metal–organic small-molecule crystal structures. The database has been in operation for over 50 years and continues to be the primary means of sharing structural chemistry data and knowledge across disciplines. As well as structures that are made public to support scientific articles, it includes many structures published directly as CSD Communications. All structures are processed both computationally and by expert structural chemistry editors prior to entering the database. A key component of this processing is the reliable association of the chemical identity of the structure studied with the experimental data. This important step helps ensure that data is widely discoverable and readily reusable. Content is further enriched through selective inclusion of additional experimental data. Entries are available to anyone through free CSD community web services. Linking services developed and maintained by the CCDC, combined with the use of standard identifiers, facilitate discovery from other resources. Data can also be accessed through CCDC and third party software applications and through an application programming interface.

6,313 citations

Journal ArticleDOI
TL;DR: This review covers the literature published in 2014 for marine natural products, with 1116 citations referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms.

4,649 citations

Journal ArticleDOI
26 Mar 2013-ACS Nano
TL;DR: The properties and advantages of single-, few-, and many-layer 2D materials in field-effect transistors, spin- and valley-tronics, thermoelectrics, and topological insulators, among many other applications are highlighted.
Abstract: Graphene’s success has shown that it is possible to create stable, single and few-atom-thick layers of van der Waals materials, and also that these materials can exhibit fascinating and technologically useful properties. Here we review the state-of-the-art of 2D materials beyond graphene. Initially, we will outline the different chemical classes of 2D materials and discuss the various strategies to prepare single-layer, few-layer, and multilayer assembly materials in solution, on substrates, and on the wafer scale. Additionally, we present an experimental guide for identifying and characterizing single-layer-thick materials, as well as outlining emerging techniques that yield both local and global information. We describe the differences that occur in the electronic structure between the bulk and the single layer and discuss various methods of tuning their electronic properties by manipulating the surface. Finally, we highlight the properties and advantages of single-, few-, and many-layer 2D materials in...

4,123 citations

Journal ArticleDOI
TL;DR: In this article, the authors describe a simple, nondestructive procedure for measuring the force constant, resonant frequency, and quality factor of an AFM cantilever spring and the effective radius of curvature of an AU tip.
Abstract: Images and force measurements taken by an atomic‐force microscope (AFM) depend greatly on the properties of the spring and tip used to probe the sample’s surface. In this article, we describe a simple, nondestructive procedure for measuring the force constant, resonant frequency, and quality factor of an AFM cantilever spring and the effective radius of curvature of an AFM tip. Our procedure uses the AFM itself and does not require additional equipment.

3,975 citations

Journal ArticleDOI
TL;DR: The atomic force microscope (AFM) is not only used to image the topography of solid surfaces at high resolution but also to measure force-versus-distance curves as discussed by the authors, which provide valuable information on local material properties such as elasticity, hardness, Hamaker constant, adhesion and surface charge densities.

3,281 citations