scispace - formally typeset
Search or ask a question
Author

Gerhard Rempe

Bio: Gerhard Rempe is an academic researcher from Max Planck Society. The author has contributed to research in topics: Photon & Optical cavity. The author has an hindex of 73, co-authored 299 publications receiving 19937 citations. Previous affiliations of Gerhard Rempe include California Institute of Technology & Complutense University of Madrid.


Papers
More filters
Journal ArticleDOI
TL;DR: The dynamics of the interaction of a single Rydberg atom with a single mode of an electromagnetic field in a superconducting cavity was investigated and the quantum collapse and revival predicted by the Jaynes-Cummings model were demonstrated experimentally for the first time.
Abstract: The dynamics of the interaction of a single Rydberg atom with a single mode of an electromagnetic field in a superconducting cavity was investigated. Velocity-selected atoms were used and the evolution of the atomic inversion as atom and field exchange energy was observed. The quantum collapse and revival predicted by the Jaynes-Cummings model were demonstrated experimentally for the first time. The evaluation of the dynamic behavior of the atoms allows us to determine the statistics of the few photons in the cavity.

1,132 citations

Journal ArticleDOI
TL;DR: An investigation of the spectral response of a small collection of two-state atoms strongly coupled to the field of a high-finesse optical resonator finds a coupling-induced normal-mode splitting even for one intracavity atom, representing a direct spectroscopic measurement of the so-called vacuum Rabi splitting for the atom-cavity system.
Abstract: An investigation of the spectral response of a small collection of two-state atoms strongly coupled to the field of a high-finesse optical resonator is described for mean number N¯≤10 atoms. For weak excitation, a coupling-induced normal-mode splitting is observed even for one intracavity atom, representing a direct spectroscopic measurement of the so-called vacuum Rabi splitting for the atom-cavity system.

904 citations

Journal ArticleDOI
TL;DR: In this article, a review describes progress towards the goal of multinode networks using the current generation of experiments, which have achieved unprecedented levels of atomic qubit control and light-matter coupling efficiencies.
Abstract: A vision has formed in recent years of the components necessary for a large-scale quantum network. Single trapped atoms can serve as the nodes of this network, with the links established by flying photons that are coupled to the atoms using optical resonators. This review describes progress towards the goal of multinode networks using the current generation of experiments, which have achieved unprecedented levels of atomic qubit control and light-matter coupling efficiencies.

766 citations

Journal ArticleDOI
12 Apr 2012-Nature
TL;DR: In this article, the authors present a prototype of a quantum network based on single atoms embedded in optical cavities and demonstrate the faithful transfer of an atomic quantum state and the creation of entanglement between two identical nodes in separate laboratories.
Abstract: Quantum networks are distributed quantum many-body systems with tailored topology and controlled information exchange. They are the backbone of distributed quantum computing architectures and quantum communication. Here we present a prototype of such a quantum network based on single atoms embedded in optical cavities. We show that atom–cavity systems form universal nodes capable of sending, receiving, storing and releasing photonic quantum information. Quantum connectivity between nodes is achieved in the conceptually most fundamental way—by the coherent exchange of a single photon. We demonstrate the faithful transfer of an atomic quantum state and the creation of entanglement between two identical nodes in separate laboratories. The non-local state that is created is manipulated by local quantum bit (qubit) rotation. This efficient cavity-based approach to quantum networking is particularly promising because it offers a clear perspective for scalability, thus paving the way towards large-scale quantum networks and their applications. Single atoms in optical cavities in two separate laboratories are the nodes of an elementary quantum network, in which quantum information is distributed via the controlled emission and absorption of single photons. Quantum networks, following the principles of quantum teleportation, form the backbone of distributed quantum-computing architectures and quantum communication. This paper reports the first realization of an elementary quantum network with two quantum nodes based on single atoms trapped in optical cavities in separate laboratories. The approach is particularly promising in that it demonstrates all the necessary ingredients of a full-scale quantum network.

742 citations

Journal ArticleDOI
TL;DR: In this article, a sequence of single photons is emitted on demand from a single three-level atom strongly coupled to a high-finesse optical cavity, generated by an adiabatically driven stimulated Raman transition between two atomic ground states.
Abstract: A sequence of single photons is emitted on demand from a single three-level atom strongly coupled to a high-finesse optical cavity. The photons are generated by an adiabatically driven stimulated Raman transition between two atomic ground states, with the vacuum field of the cavity stimulating one branch of the transition, and laser pulses deterministically driving the other branch. This process is unitary and therefore intrinsically reversible, which is essential for quantum communication and networking, and the photons should be appropriate for all-optical quantum information processing.

684 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, a review of recent experimental and theoretical progress concerning many-body phenomena in dilute, ultracold gases is presented, focusing on effects beyond standard weakcoupling descriptions, such as the Mott-Hubbard transition in optical lattices, strongly interacting gases in one and two dimensions, or lowest-Landau-level physics in quasi-two-dimensional gases in fast rotation.
Abstract: This paper reviews recent experimental and theoretical progress concerning many-body phenomena in dilute, ultracold gases. It focuses on effects beyond standard weak-coupling descriptions, such as the Mott-Hubbard transition in optical lattices, strongly interacting gases in one and two dimensions, or lowest-Landau-level physics in quasi-two-dimensional gases in fast rotation. Strong correlations in fermionic gases are discussed in optical lattices or near-Feshbach resonances in the BCS-BEC crossover.

6,601 citations

Journal ArticleDOI
18 Jun 2008-Nature
TL;DR: In this paper, the authors proposed a method for quantum interconnects, which convert quantum states from one physical system to those of another in a reversible manner, allowing the distribution of entanglement across the network and teleportation of quantum states between nodes.
Abstract: Quantum networks provide opportunities and challenges across a range of intellectual and technical frontiers, including quantum computation, communication and metrology. The realization of quantum networks composed of many nodes and channels requires new scientific capabilities for generating and characterizing quantum coherence and entanglement. Fundamental to this endeavour are quantum interconnects, which convert quantum states from one physical system to those of another in a reversible manner. Such quantum connectivity in networks can be achieved by the optical interactions of single photons and atoms, allowing the distribution of entanglement across the network and the teleportation of quantum states between nodes.

5,003 citations

Journal ArticleDOI
TL;DR: In this article, the authors reviewed the Bose-Einstein condensation of dilute gases in traps from a theoretical perspective and provided a framework to understand the main features of the condensation and role of interactions between particles.
Abstract: The phenomenon of Bose-Einstein condensation of dilute gases in traps is reviewed from a theoretical perspective. Mean-field theory provides a framework to understand the main features of the condensation and the role of interactions between particles. Various properties of these systems are discussed, including the density profiles and the energy of the ground-state configurations, the collective oscillations and the dynamics of the expansion, the condensate fraction and the thermodynamic functions. The thermodynamic limit exhibits a scaling behavior in the relevant length and energy scales. Despite the dilute nature of the gases, interactions profoundly modify the static as well as the dynamic properties of the system; the predictions of mean-field theory are in excellent agreement with available experimental results. Effects of superfluidity including the existence of quantized vortices and the reduction of the moment of inertia are discussed, as well as the consequences of coherence such as the Josephson effect and interference phenomena. The review also assesses the accuracy and limitations of the mean-field approach.

4,782 citations

Book
01 Jul 2007
TL;DR: Barad, a theoretical physicist and feminist theorist, elaborates her theory of agential realism as mentioned in this paper, which is at once a new epistemology, ontology, and ethics.
Abstract: Meeting the Universe Halfway is an ambitious book with far-reaching implications for numerous fields in the natural sciences, social sciences, and humanities. In this volume, Karen Barad, theoretical physicist and feminist theorist, elaborates her theory of agential realism. Offering an account of the world as a whole rather than as composed of separate natural and social realms, agential realism is at once a new epistemology, ontology, and ethics. The starting point for Barad’s analysis is the philosophical framework of quantum physicist Niels Bohr. Barad extends and partially revises Bohr’s philosophical views in light of current scholarship in physics, science studies, and the philosophy of science as well as feminist, poststructuralist, and other critical social theories. In the process, she significantly reworks understandings of space, time, matter, causality, agency, subjectivity, and objectivity. In an agential realist account, the world is made of entanglements of “social” and “natural” agencies, where the distinction between the two emerges out of specific intra-actions. Intra-activity is an inexhaustible dynamism that configures and reconfigures relations of space-time-matter. In explaining intra-activity, Barad reveals questions about how nature and culture interact and change over time to be fundamentally misguided. And she reframes understanding of the nature of scientific and political practices and their “interrelationship.” Thus she pays particular attention to the responsible practice of science, and she emphasizes changes in the understanding of political practices, critically reworking Judith Butler’s influential theory of performativity. Finally, Barad uses agential realism to produce a new interpretation of quantum physics, demonstrating that agential realism is more than a means of reflecting on science; it can be used to actually do science.

4,731 citations

Journal ArticleDOI
TL;DR: In this paper, the authors consider the atomic dynamics and the optical response of the medium to a continuous-wave laser and show how coherently prepared media can be used to improve frequency conversion in nonlinear optical mixing experiments.
Abstract: Coherent preparation by laser light of quantum states of atoms and molecules can lead to quantum interference in the amplitudes of optical transitions. In this way the optical properties of a medium can be dramatically modified, leading to electromagnetically induced transparency and related effects, which have placed gas-phase systems at the center of recent advances in the development of media with radically new optical properties. This article reviews these advances and the new possibilities they offer for nonlinear optics and quantum information science. As a basis for the theory of electromagnetically induced transparency the authors consider the atomic dynamics and the optical response of the medium to a continuous-wave laser. They then discuss pulse propagation and the adiabatic evolution of field-coupled states and show how coherently prepared media can be used to improve frequency conversion in nonlinear optical mixing experiments. The extension of these concepts to very weak optical fields in the few-photon limit is then examined. The review concludes with a discussion of future prospects and potential new applications.

4,218 citations