scispace - formally typeset
Search or ask a question
Author

German Martinez

Bio: German Martinez is an academic researcher from Florida State University. The author has contributed to research in topics: Large Hadron Collider & Lepton. The author has an hindex of 141, co-authored 1476 publications receiving 107887 citations. Previous affiliations of German Martinez include University of Maryland, College Park & École des mines de Nantes.


Papers
More filters
Journal ArticleDOI
Vardan Khachatryan1, Albert M. Sirunyan1, Armen Tumasyan1, Wolfgang Adam2  +2285 moreInstitutions (181)
TL;DR: In this article, a search for evidence of particle dark matter (DM) and unparticle production at the LHC has been performed using events containing two charged leptons, consistent with the decay of a Z boson, and large missing transverse momentum.
Abstract: A search for evidence of particle dark matter (DM) and unparticle production at the LHC has been performed using events containing two charged leptons, consistent with the decay of a Z boson, and large missing transverse momentum. This study is based on data collected with the CMS detector corresponding to an integrated luminosity of 19.7 inverse femtobarns of pp collisions at the LHC at a center-of-mass energy of 8 TeV. No significant excess of events is observed above the number expected from the standard model contributions. The results are interpreted in terms of 90% confidence level limits on the DM-nucleon scattering cross section, as a function of the DM particle mass, for both spin-dependent and spin-independent scenarios. Limits are set on the effective cutoff scale Lambda, and on the annihilation rate for DM particles, assuming that their branching fraction to quarks is 100%. Additionally, the most stringent 95% confidence level limits to date on the unparticle model parameters are obtained.

37 citations

Journal ArticleDOI
Albert M. Sirunyan1, Armen Tumasyan1, Wolfgang Adam, Federico Ambrogi  +2356 moreInstitutions (203)
TL;DR: A measurement of the groomed jet mass in PbPb and pp collisions at a nucleon-nucleon center-of-mass energy of 5.02 TeV with the CMS detector at the LHC is presented in this article.
Abstract: A measurement of the groomed jet mass in PbPb and pp collisions at a nucleon-nucleon center-of-mass energy of 5.02 TeV with the CMS detector at the LHC is presented. Jet grooming is a recursive procedure which sequentially removes soft constituents of a jet until a pair of hard subjets is found. The resulting groomed jets can be used to study modifications to the parton shower evolution in the presence of the hot and dense medium created in heavy ion collisions. Predictions of groomed jet properties from the pythia and herwig++ event generators agree with the measurements in pp collisions. When comparing the results from the most central PbPb collisions to pp data, a hint of an increase of jets with large jet mass is observed, which could originate from additional medium-induced radiation at a large angle from the jet axis. However, no modification of the groomed mass of the core of the jet is observed for all PbPb centrality classes. The PbPb results are also compared to predictions from the jewel and q-pythia event generators, which predict a large modification of the groomed mass not observed in the data.

37 citations

Journal ArticleDOI
Vardan Khachatryan1, Albert M. Sirunyan1, Armen Tumasyan1, Wolfgang Adam  +2261 moreInstitutions (142)
TL;DR: A search is presented for narrow heavy resonances X decaying into pairs of Higgs bosons in proton-proton collisions collected by the CMS experiment at the LHC at s=8TeV, significantly extending previous searches.
Abstract: A search is presented for narrow heavy resonances X decaying into pairs of Higgs bosons (H) in proton-proton collisions collected by the CMS experiment at the LHC at sqrt(s)=8 TeV. The data correspond to an integrated luminosity of 19.7 inverse femtobarns. The search considers HH resonances with masses between 1 and 3 TeV, having final states of two b quark pairs. Each Higgs boson is produced with large momentum, and the hadronization products of the pair of b quarks can usually be reconstructed as single large jets. The background from multijet and t-tbar events is significantly reduced by applying requirements related to the flavor of the jet, its mass, and its substructure. The signal would be identified as a peak on top of the dijet invariant mass spectrum of the remaining background events. No evidence is observed for such a signal. Upper limits obtained at 95% confidence level for the product of the production cross section and branching fraction sigma(gg to X) B(X to HH to b-bbar b-bbar) range from 10 to 1.5 fb for the mass of X from 1.15 to 2.0 TeV, significantly extending previous searches. For a warped extra dimension theory with a mass scale Lambda[R] = 1 TeV, the data exclude radion scalar masses between 1.15 and 1.55 TeV.

37 citations

Journal ArticleDOI
S. Chatrchyan1, Vardan Khachatryan1, Albert M. Sirunyan1, Armen Tumasyan1  +3913 moreInstitutions (146)
TL;DR: The mass of the top quark was measured using a sample of candidate events with at least six jets in the final state as discussed by the authors, which corresponds to an integrated luminosity of 3.54 inverse femtobarns.
Abstract: The mass of the top quark is measured using a sample of $t\bar{t}$ candidate events with at least six jets in the final state. The sample is selected from data collected with the CMS detector in pp collisions at $\sqrt{s}$ = 7 TeV in 2011 and corresponds to an integrated luminosity of 3.54 inverse femtobarns. The mass is reconstructed for each event employing a kinematic fit of the jets to a $t\bar{t}$ hypothesis. The top-quark mass is measured to be 173.49 $\pm$ 0.69 (stat.) $\pm$ 1.21 (syst.) GeV. A combination with previously published measurements in other decay modes by CMS yields a mass of 173.54 $\pm$ 0.33 (stat.) $\pm$ 0.96 (syst.) GeV.

37 citations

Journal ArticleDOI
TL;DR: In this article, a measurement of direct photons in $p+p$ collisions at $sqrt{s}=200\text{ }, }\mathrm{GeV}$ is presented.
Abstract: A measurement of direct photons in $p+p$ collisions at $\sqrt{s}=200\text{ }\text{ }\mathrm{GeV}$ is presented. A photon excess above background from ${\ensuremath{\pi}}^{0}\ensuremath{\rightarrow}\ensuremath{\gamma}+\ensuremath{\gamma}$, $\ensuremath{\eta}\ensuremath{\rightarrow}\ensuremath{\gamma}+\ensuremath{\gamma}$ and other decays is observed in the transverse momentum range $5.5l{p}_{\mathrm{T}}l7\text{ }\text{ }\mathrm{GeV}/c$. The result is compared to a next-to-leading-order perturbative QCD calculation. Within errors, good agreement is found between the QCD calculation and the measured result.

37 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
Peter A. R. Ade1, Nabila Aghanim2, Monique Arnaud3, M. Ashdown4  +334 moreInstitutions (82)
TL;DR: In this article, the authors present a cosmological analysis based on full-mission Planck observations of temperature and polarization anisotropies of the cosmic microwave background (CMB) radiation.
Abstract: This paper presents cosmological results based on full-mission Planck observations of temperature and polarization anisotropies of the cosmic microwave background (CMB) radiation. Our results are in very good agreement with the 2013 analysis of the Planck nominal-mission temperature data, but with increased precision. The temperature and polarization power spectra are consistent with the standard spatially-flat 6-parameter ΛCDM cosmology with a power-law spectrum of adiabatic scalar perturbations (denoted “base ΛCDM” in this paper). From the Planck temperature data combined with Planck lensing, for this cosmology we find a Hubble constant, H0 = (67.8 ± 0.9) km s-1Mpc-1, a matter density parameter Ωm = 0.308 ± 0.012, and a tilted scalar spectral index with ns = 0.968 ± 0.006, consistent with the 2013 analysis. Note that in this abstract we quote 68% confidence limits on measured parameters and 95% upper limits on other parameters. We present the first results of polarization measurements with the Low Frequency Instrument at large angular scales. Combined with the Planck temperature and lensing data, these measurements give a reionization optical depth of τ = 0.066 ± 0.016, corresponding to a reionization redshift of . These results are consistent with those from WMAP polarization measurements cleaned for dust emission using 353-GHz polarization maps from the High Frequency Instrument. We find no evidence for any departure from base ΛCDM in the neutrino sector of the theory; for example, combining Planck observations with other astrophysical data we find Neff = 3.15 ± 0.23 for the effective number of relativistic degrees of freedom, consistent with the value Neff = 3.046 of the Standard Model of particle physics. The sum of neutrino masses is constrained to ∑ mν < 0.23 eV. The spatial curvature of our Universe is found to be very close to zero, with | ΩK | < 0.005. Adding a tensor component as a single-parameter extension to base ΛCDM we find an upper limit on the tensor-to-scalar ratio of r0.002< 0.11, consistent with the Planck 2013 results and consistent with the B-mode polarization constraints from a joint analysis of BICEP2, Keck Array, and Planck (BKP) data. Adding the BKP B-mode data to our analysis leads to a tighter constraint of r0.002 < 0.09 and disfavours inflationarymodels with a V(φ) ∝ φ2 potential. The addition of Planck polarization data leads to strong constraints on deviations from a purely adiabatic spectrum of fluctuations. We find no evidence for any contribution from isocurvature perturbations or from cosmic defects. Combining Planck data with other astrophysical data, including Type Ia supernovae, the equation of state of dark energy is constrained to w = −1.006 ± 0.045, consistent with the expected value for a cosmological constant. The standard big bang nucleosynthesis predictions for the helium and deuterium abundances for the best-fit Planck base ΛCDM cosmology are in excellent agreement with observations. We also constraints on annihilating dark matter and on possible deviations from the standard recombination history. In neither case do we find no evidence for new physics. The Planck results for base ΛCDM are in good agreement with baryon acoustic oscillation data and with the JLA sample of Type Ia supernovae. However, as in the 2013 analysis, the amplitude of the fluctuation spectrum is found to be higher than inferred from some analyses of rich cluster counts and weak gravitational lensing. We show that these tensions cannot easily be resolved with simple modifications of the base ΛCDM cosmology. Apart from these tensions, the base ΛCDM cosmology provides an excellent description of the Planck CMB observations and many other astrophysical data sets.

10,728 citations

Journal ArticleDOI
01 Apr 1988-Nature
TL;DR: In this paper, a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) is presented.
Abstract: Deposits of clastic carbonate-dominated (calciclastic) sedimentary slope systems in the rock record have been identified mostly as linearly-consistent carbonate apron deposits, even though most ancient clastic carbonate slope deposits fit the submarine fan systems better. Calciclastic submarine fans are consequently rarely described and are poorly understood. Subsequently, very little is known especially in mud-dominated calciclastic submarine fan systems. Presented in this study are a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) that reveals a >250 m thick calciturbidite complex deposited in a calciclastic submarine fan setting. Seven facies are recognised from core and thin section characterisation and are grouped into three carbonate turbidite sequences. They include: 1) Calciturbidites, comprising mostly of highto low-density, wavy-laminated bioclast-rich facies; 2) low-density densite mudstones which are characterised by planar laminated and unlaminated muddominated facies; and 3) Calcidebrites which are muddy or hyper-concentrated debrisflow deposits occurring as poorly-sorted, chaotic, mud-supported floatstones. These

9,929 citations

Journal ArticleDOI
Georges Aad1, T. Abajyan2, Brad Abbott3, Jalal Abdallah4  +2964 moreInstitutions (200)
TL;DR: In this article, a search for the Standard Model Higgs boson in proton-proton collisions with the ATLAS detector at the LHC is presented, which has a significance of 5.9 standard deviations, corresponding to a background fluctuation probability of 1.7×10−9.

9,282 citations