scispace - formally typeset
Search or ask a question
Author

German Martinez

Bio: German Martinez is an academic researcher from Florida State University. The author has contributed to research in topics: Large Hadron Collider & Lepton. The author has an hindex of 141, co-authored 1476 publications receiving 107887 citations. Previous affiliations of German Martinez include University of Maryland, College Park & École des mines de Nantes.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a search for the pair production of third-generation scalar and vector leptoquarks, as well as for top squarks in R-parity-violating supersymmetric models is presented.
Abstract: Results are presented from a search for the pair production of third-generation scalar and vector leptoquarks, as well as for top squarks in R-parity-violating supersymmetric models. In either scenario, the new, heavy particle decays into a tau lepton and a b quark. The search is based on a data sample of pp collisions at sqrt(s) = 7 TeV, which is collected by the CMS detector at the LHC and corresponds to an integrated luminosity of 4.8 inverse femtobarns. The number of observed events is found to be in agreement with the standard model prediction, and exclusion limits on mass parameters are obtained at the 95% confidence level. Vector leptoquarks with masses below 760 GeV are excluded and, if the branching fraction of the scalar leptoquark decay to a tau lepton and a b quark is assumed to be unity, third-generation scalar leptoquarks with masses below 525 GeV are ruled out. Top squarks with masses below 453 GeV are excluded for a typical benchmark scenario, and limits on the coupling between the top squark, tau lepton, and b quark, lambda'[333] are obtained. These results are the most stringent for these scenarios to date.

65 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present measurements of differential cross sections for the production of a Z boson and at least one hadronic jet in proton-proton collisions at √s=7 TeV, recorded by the CMS detector, using a data sample corresponding to an integrated luminosity of 4.9
Abstract: Measurements of differential cross sections are presented for the production of a Z boson and at least one hadronic jet in proton-proton collisions at √s=7 TeV, recorded by the CMS detector, using a data sample corresponding to an integrated luminosity of 4.9 fb^(−1). The jet multiplicity distribution is measured for up to six jets. The differential cross sections are measured as a function of jet transverse momentum and pseudorapidity for the four highest transverse momentum jets. The distribution of the scalar sum of jet transverse momenta is also measured as a function of the jet multiplicity. The measurements are compared with theoretical predictions at leading and next-to-leading order in perturbative QCD.

65 citations

Journal ArticleDOI
TL;DR: In this article, a measurement of the underlying activity in scattering processes with transverse momentum scale in the GeV region is performed in proton-proton collisions at 0.9 TeV, using data collected by the CMS experiment at the LHC.
Abstract: A measurement of the underlying activity in scattering processes with transverse momentum scale in the GeV region is performed in proton-proton collisions at sqrt(s) = 0.9 TeV, using data collected by the CMS experiment at the LHC. Charged hadron production is studied with reference to the direction of a leading object, either a charged particle or a set of charged particles forming a jet. Predictions of several QCD-inspired models as implemented in PYTHIA are compared, after full detector simulation, to the data. The models generally predict too little production of charged hadrons with pseudorapidity eta 0.5 GeV/c, and azimuthal direction transverse to that of the leading object.

65 citations

Journal ArticleDOI
Vardan Khachatryan1, Albert M. Sirunyan1, Armen Tumasyan1, Wolfgang Adam  +2124 moreInstitutions (141)
TL;DR: In this article, the long-lived lepton-like sector of the phenomenological minimal supersymmetric standard model (pMSSM) and the anomaly-mediated supersymmetry breaking (AMSB) model were derived from the results presented in a recent search for longlived charged particles in proton-proton collisions, based on data collected by the CMS detector at a centre-of-mass energy of 8TeV at the Large Hadron Collider.
Abstract: Stringent limits are set on the long-lived lepton-like sector of the phenomenological minimal supersymmetric standard model (pMSSM) and the anomaly-mediated supersymmetry breaking (AMSB) model. The limits are derived from the results presented in a recent search for long-lived charged particles in proton–proton collisions, based on data collected by the CMS detector at a centre-of-mass energy of 8 TeV at the Large Hadron Collider. In the pMSSM parameter sub-space considered, 95.9 % of the points predicting charginos with a lifetime of at least 10 ns are excluded. These constraints on the pMSSM are the first obtained at the LHC. Charginos with a lifetime greater than 100 ns and masses up to about 800 GeV in the AMSB model are also excluded. The method described can also be used to set constraints on other models.

64 citations

Journal ArticleDOI
TL;DR: In this article, a search for a heavy right-handed W boson decaying to a heavy neutrino and a charged lepton in events with two same-flavor leptons (e or μ) and two jets is presented.
Abstract: A search for a heavy right-handed W boson (W$_{R}$) decaying to a heavy right-handed neutrino and a charged lepton in events with two same-flavor leptons (e or μ) and two jets, is presented. The analysis is based on proton-proton collision data, collected by the CMS Collaboration at the LHC in 2016 and corresponding to an integrated luminosity of 35.9 fb$^{−1}$. No significant excess above the standard model expectation is seen in the invariant mass distribution of the dilepton plus dijet system. Assuming that couplings are identical to those of the standard model, and that only one heavy neutrino flavor N$_{R}$ contributes significantly to the W$_{R}$ decay width, the region in the two-dimensional $ \left({m}_{{\mathrm{W}}_{\mathrm{R}}},{m}_{{\mathrm{N}}_{\mathrm{R}}}\right) $ mass plane excluded at 95% confidence level extends to approximately $ {m}_{{\mathrm{W}}_{\mathrm{R}}}=4.4 $ TeV and covers a large range of right-handed neutrino masses below the W$_{R}$ boson mass. This analysis provides the most stringent limits on the W$_{R}$ mass to date.

64 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
Peter A. R. Ade1, Nabila Aghanim2, Monique Arnaud3, M. Ashdown4  +334 moreInstitutions (82)
TL;DR: In this article, the authors present a cosmological analysis based on full-mission Planck observations of temperature and polarization anisotropies of the cosmic microwave background (CMB) radiation.
Abstract: This paper presents cosmological results based on full-mission Planck observations of temperature and polarization anisotropies of the cosmic microwave background (CMB) radiation. Our results are in very good agreement with the 2013 analysis of the Planck nominal-mission temperature data, but with increased precision. The temperature and polarization power spectra are consistent with the standard spatially-flat 6-parameter ΛCDM cosmology with a power-law spectrum of adiabatic scalar perturbations (denoted “base ΛCDM” in this paper). From the Planck temperature data combined with Planck lensing, for this cosmology we find a Hubble constant, H0 = (67.8 ± 0.9) km s-1Mpc-1, a matter density parameter Ωm = 0.308 ± 0.012, and a tilted scalar spectral index with ns = 0.968 ± 0.006, consistent with the 2013 analysis. Note that in this abstract we quote 68% confidence limits on measured parameters and 95% upper limits on other parameters. We present the first results of polarization measurements with the Low Frequency Instrument at large angular scales. Combined with the Planck temperature and lensing data, these measurements give a reionization optical depth of τ = 0.066 ± 0.016, corresponding to a reionization redshift of . These results are consistent with those from WMAP polarization measurements cleaned for dust emission using 353-GHz polarization maps from the High Frequency Instrument. We find no evidence for any departure from base ΛCDM in the neutrino sector of the theory; for example, combining Planck observations with other astrophysical data we find Neff = 3.15 ± 0.23 for the effective number of relativistic degrees of freedom, consistent with the value Neff = 3.046 of the Standard Model of particle physics. The sum of neutrino masses is constrained to ∑ mν < 0.23 eV. The spatial curvature of our Universe is found to be very close to zero, with | ΩK | < 0.005. Adding a tensor component as a single-parameter extension to base ΛCDM we find an upper limit on the tensor-to-scalar ratio of r0.002< 0.11, consistent with the Planck 2013 results and consistent with the B-mode polarization constraints from a joint analysis of BICEP2, Keck Array, and Planck (BKP) data. Adding the BKP B-mode data to our analysis leads to a tighter constraint of r0.002 < 0.09 and disfavours inflationarymodels with a V(φ) ∝ φ2 potential. The addition of Planck polarization data leads to strong constraints on deviations from a purely adiabatic spectrum of fluctuations. We find no evidence for any contribution from isocurvature perturbations or from cosmic defects. Combining Planck data with other astrophysical data, including Type Ia supernovae, the equation of state of dark energy is constrained to w = −1.006 ± 0.045, consistent with the expected value for a cosmological constant. The standard big bang nucleosynthesis predictions for the helium and deuterium abundances for the best-fit Planck base ΛCDM cosmology are in excellent agreement with observations. We also constraints on annihilating dark matter and on possible deviations from the standard recombination history. In neither case do we find no evidence for new physics. The Planck results for base ΛCDM are in good agreement with baryon acoustic oscillation data and with the JLA sample of Type Ia supernovae. However, as in the 2013 analysis, the amplitude of the fluctuation spectrum is found to be higher than inferred from some analyses of rich cluster counts and weak gravitational lensing. We show that these tensions cannot easily be resolved with simple modifications of the base ΛCDM cosmology. Apart from these tensions, the base ΛCDM cosmology provides an excellent description of the Planck CMB observations and many other astrophysical data sets.

10,728 citations

Journal ArticleDOI
01 Apr 1988-Nature
TL;DR: In this paper, a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) is presented.
Abstract: Deposits of clastic carbonate-dominated (calciclastic) sedimentary slope systems in the rock record have been identified mostly as linearly-consistent carbonate apron deposits, even though most ancient clastic carbonate slope deposits fit the submarine fan systems better. Calciclastic submarine fans are consequently rarely described and are poorly understood. Subsequently, very little is known especially in mud-dominated calciclastic submarine fan systems. Presented in this study are a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) that reveals a >250 m thick calciturbidite complex deposited in a calciclastic submarine fan setting. Seven facies are recognised from core and thin section characterisation and are grouped into three carbonate turbidite sequences. They include: 1) Calciturbidites, comprising mostly of highto low-density, wavy-laminated bioclast-rich facies; 2) low-density densite mudstones which are characterised by planar laminated and unlaminated muddominated facies; and 3) Calcidebrites which are muddy or hyper-concentrated debrisflow deposits occurring as poorly-sorted, chaotic, mud-supported floatstones. These

9,929 citations

Journal ArticleDOI
Georges Aad1, T. Abajyan2, Brad Abbott3, Jalal Abdallah4  +2964 moreInstitutions (200)
TL;DR: In this article, a search for the Standard Model Higgs boson in proton-proton collisions with the ATLAS detector at the LHC is presented, which has a significance of 5.9 standard deviations, corresponding to a background fluctuation probability of 1.7×10−9.

9,282 citations