scispace - formally typeset
Search or ask a question
Author

Germund Tyler

Bio: Germund Tyler is an academic researcher from Lund University. The author has contributed to research in topics: Soil pH & Soil water. The author has an hindex of 49, co-authored 101 publications receiving 7144 citations.
Topics: Soil pH, Soil water, Beech, Calcifuge, Fagus sylvatica


Papers
More filters
Journal ArticleDOI
Germund Tyler1
TL;DR: A review of recent and current literature deals with rare earth elements in primary and secondary soil minerals, concentrations in surface soils, factors influencing adsorption, solubility and transport in soils, including weathering and transformations of rare earth minerals, and vertical distribution in soil profiles as mentioned in this paper.
Abstract: The rare earth elements (REEs) form a chemically uniform group and include yttrium (Y), lanthanum (La) and the lanthanides cerium (Ce), praseodymium (Pr), neodymium (Nd), promethium (Pm), samarium (Sm), europium (Eu), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), ytterbium (Yb), and lutetium (Lu) Their average abundance in the Earth’s crust range from 66µg g−1 in Ce to 05µg g−1 in Tm and «01µg g−1 in Pm Recent great improvements in more routine analytical technique, the use of REEs as fertilisers, at least in East Asian agriculture, and the importance of these elements as indicators in both pedological and physiological processes and reactions have contributed to an increased interest in these previously less considered elements in environmental sciences This review of recent and current literature deals with REEs in primary and secondary soil minerals, concentrations in surface soils, factors influencing adsorption, solubility and transport in soils, including weathering and transformations of REE minerals, and vertical distribution in soil profiles Reviewed and discussed are also concentrations, distribution and localisation of REEs in plants and plant organs, soil-plant relationships and interactions, effects on plant growth and crop production and their importance in plant physiology and biochemistry The REEs are found, usually several elements together, as phosphates, carbonates and silicate minerals finely dispersed especially in magmatic and metamorphic rocks REE concentrations in surface soils of humid climates, such as the A(E)-horizons of Podzols and Laterites, are usually lower than in the parent material, due to higher weathering and leaching rates than of the average soil constituents Some fractionation may occur due to the formation of more element-specific secondary minerals Transfer from soil to plant is usually low, but extreme accumulators are found, eg, among several species of ferns Roots have generally higher concentrations than shoots Possible uptakemechanisms of REEs are discussed Uptake is positively, though often weakly, correlated with soil acidity and easily soluble concentrations of the elements, but rarely well related to their total concentrations in the soil Under certain conditions, low concentrations of at least some REEs seem to favour plant growth and productivity, but the physiological mechanisms are still not well understood Some considerations concerning the boundary between essential and non-essential micro nutrients are discussed

723 citations

Journal ArticleDOI
01 Jan 1970-Oikos
TL;DR: The capacity of Hylocomium splendens to sorb heavy metal ions from dilute solutions was studied in this article, and the sorption and retention generally followed the order: Cu, Pb > Ni > Co > Zn, Mn.
Abstract: The capacity of Hylocomium splendens to sorb heavy metal ions from dilute solutions was studied. The sorption and retention generally followed the order: Cu, Pb > Ni > Co > Zn, Mn. This order proved valid within a wide range of concentrations and independently whether the ions were supplied in pure or mixed solutions. The capacity of the moss tissues to sorb traces of Cu and Pb in the presence of comparatively large amounts of Ca, K, Mg, and Na was found to be very great. This makes it probable that these ions, supplied with the precipitation, are almost quantitatively sorbed by the moss carpets. A large share of Ni when present in precipitation, will also possibly be sorbed. A natural carpet of Hylocomium splendens showed a continuous uptake of Mn, Fe, and Ca from young to old tissues, whereas the increase in the concentrations of minor heavy metals was balanced by the dry matter decrease through decomposition. The developing and mature mor layer below the moss carpet had not enriched heavy metals above the concentrations of the old moss tissues.

302 citations

Journal ArticleDOI
Germund Tyler1
TL;DR: The literature on heavy metals in bryophytes is reviewed, including mechanisms of metal uptake, retention, toxicity and tolerance and interspecies differences in particular are discussed, including the development of extreme tolerance encountered in certain taxa.

294 citations

Journal ArticleDOI
TL;DR: In this paper, the effects of heavy metals on terrestrial organisms are reviewed, considering evidence from both laboratory and field studies, and problems concerning heavy-metal exposure and assessment of the sensitivity of field biota to heavy metals are discussed.
Abstract: Ecological and physiological effects of heavy metals on terrestrial organisms are reviewed, considering evidence from both laboratory and field studies. Problems concerning how to define heavy-metal exposure and to assess the sensitivity of field biota to heavy metals are discussed. Mechanisms of heavy-metal tolerance are considered including avoidance, exclusion, immobilization and excretion, as well biochemical mechanisms including enzymatic change. The taxonomy of heavy-metal tolerance and problems concerning tolerance and ecological performance are discussed briefly. Efforts are made to compare the relative sensitivity of various groups, including bacteria, fungi, bryophytes, lichens, vascular plants and soil invertebrates. An emphasis is placed on organisms of temperate forest ecosystems, particularly coniferous forests.

283 citations

Journal ArticleDOI
TL;DR: In this article, the authors report changes in solution concentrations of 60 mineral elements following CaCO3 addition to a moderately acid semi-natural soil, and possible mechanisms accounting for the differing solubility patterns as related to soil acidity are discussed.
Abstract: Little is known about solubility and soil solution concentrations of most elements occurring in the solid phase of soils. This study reports changes in solution concentrations of 60 mineral elements following CaCO3 addition to a moderately acid semi-natural soil, and possible mechanisms accounting for the differing solubility patterns as related to soil acidity are discussed. Soil solutions were obtained by high-speed centrifuging and ultrafiltration (0.2 mum) of samples at 60% water-holding capacity of the A horizon of a Cambisol developed from a shale-gneiss moraine and supplied with CaCO3 at 20 rates to yield a soil solution pH range of 5.2-7.8. Concentrations of elements were determined in the solutions by ICP-AES or (for most elements) ICP-MS. Several distinct patterns of soil solution concentrations as a function of soil solution pH were demonstrated. Positively related to pH and CaCO3 supply were soil solution concentrations of As, Br, Mo, S, Sb, Se, U, and W, and to a lesser degree, Co, Cr, Hg, Mg, and Sr. Inversely related to pH were concentrations of Al, B, Ba, Bi, Cs, Ce, Eu, Ga, Ge, Fe, Li, K, Rb, Na, Th, and Ti; less distinctly inversely rated were Dy, Er, Gd, Hf, La, Lu, Mn, Nd, Pr, Sm, Sc, Si, Tl, Tm, and Yb. 'U-shaped' relationships to pH were demonstrated for the concentrations of Ag, Cd, Nb, Ni, P, V, and Zr. There were no or irregular relations between pH and concentrations of Be, Cu, Ho, Pb, Ta, and Tb. Differences between elements in their soil solution concentrations as related to total (HNO3-digestible) concentrations and the solubility of organic C were also treated. Increasing the pH of a soil by adding CaCO3 changes the solubility of most mineral elements substantially, the several distinct patterns observed being governed by, for example, ionic properties and charge, affinity for organic compounds, and pH-dependent formation and solubility of complexes. (Less)

237 citations


Cited by
More filters
Book
01 Jan 1984
TL;DR: The Biosphere The Anthroposphere Soils and Soil Processes Weathering Processes Pedogenic Processes Soil Constituents Trace Elements Minerals Organic Matter Organisms in Soils Trace Elements in Plants.
Abstract: Chapter 1 The Biosphere Chapter 2 The Anthroposphere Introduction Air Pollution Water Pollution Soil Plants Chapter 3 Soils and Soil Processes Introduction Weathering Processes Pedogenic Processes Chapter 4 Soil Constituents Introduction Trace Elements Minerals Organic Matter Organisms in Soils Chapter 5 Trace Elements in Plants Introduction Absorption Translocation Availability Essentiality and Deficiency Toxicity and Tolerance Speciation Interaction Chapter 6 Elements of Group 1 (Previously Group Ia) Introduction Lithium Rubidium Cesium Chapter 7 Elements of Group 2 (Previously Group IIa) Beryllium Strontium Barium Radium Chapter 8 Elements of Group 3 (Previously Group IIIb) Scandium Yttrium Lanthanides Actinides Chapter 9 Elements of Group 4 (Previously Group IVb) Titanium Zirconium Hafnium Chapter 10 Elements of Group 5 (Previously Group Vb) Vanadium Niobium Tantalum Chapter 11 Elements of Group 6 (Previously Group VIb) Chromium Molybdenum Tungsten Chapter 12 Elements of Group 7 (Previously Group VIIb) Manganese Technetium Rhenium Chapter 13 Elements of Group 8 (Previously Part of Group VIII) Iron Ruthenium Osmium Chapter 14 Elements of Group 9 (Previously Part of Group VIII) Cobalt Rhodium Iridium Chapter 15 Elements of Group 10 (Previously Part of Group VIII) Nickel Palladium Platinum Chapter 16 Elements of Group 11 (Previously Group Ib) Copper Silver Gold Chapter 17 Trace Elements of Group 12 (Previously of Group IIb) Zinc Cadmium Mercury Chapter 18 Elements of Group 13 (Previously Group IIIa) Boron Aluminum Gallium Indium Thallium Chapter 19 Elements of Group I4 (Previously Group IVa) Silicon Germanium Tin Lead Chapter 20 Elements of Group 15 (Previously Group Va) Arsenic Antimony Bismuth Chapter 21 Elements of Group 16 (Previously Group VIa) Selenium Tellurium Polonium Chapter 22 Elements of Group 17 (Previously Group VIIa) Fluorine Chlorine Bromine Iodine

9,739 citations

Journal ArticleDOI
TL;DR: In this article, a review of the role of organic acids in rhizosphere processes is presented, which includes information on organic acid levels in plants (concentrations, compartmentalisation, spatial aspects, synthesis), plant efflux (passive versus active transport, theoretical versus experimental considerations), soil reactions (soil solution concentrations, sorption) and microbial considerations (mineralization).
Abstract: Organic acids, such as malate, citrate and oxalate, have been proposed to be involved in many processes operating in the rhizosphere, including nutrient acquisition and metal detoxification, alleviation of anaerobic stress in roots, mineral weathering and pathogen attraction. A full assessment of their role in these processes, however, cannot be determined unless the exact mechanisms of plant organic acid release and the fate of these compounds in the soil are more fully understood. This review therefore includes information on organic acid levels in plants (concentrations, compartmentalisation, spatial aspects, synthesis), plant efflux (passive versus active transport, theoretical versus experimental considerations), soil reactions (soil solution concentrations, sorption) and microbial considerations (mineralization). In summary, the release of organic acids from roots can operate by multiple mechanisms in response to a number of well-defined environmental stresses (e.g., Al, P and Fe stress, anoxia): These responses, however, are highly stress- and plant-species specific. In addition, this review indicates that the sorption of organic acids to the mineral phase and mineralisation by the soil's microbial biomass are critical to determining the effectiveness of organic acids in most rhizosphere processes.

2,339 citations

Journal ArticleDOI
TL;DR: In this article, a review of the mechanisms that are currently, but often contradictorily or inconsistently, considered to contribute to organic matter (OM) protection against decomposition in temperate soils is presented.
Abstract: Summary Mechanisms for C stabilization in soils have received much interest recently due to their relevance in the global C cycle. Here we review the mechanisms that are currently, but often contradictorily or inconsistently, considered to contribute to organic matter (OM) protection against decomposition in temperate soils: (i) selective preservation due to recalcitrance of OM, including plant litter, rhizodeposits, microbial products, humic polymers, and charred OM; (ii) spatial inaccessibility of OM against decomposer organisms due to occlusion, intercalation, hydrophobicity and encapsulation; and (iii) stabilization by interaction with mineral surfaces (Fe-, Al-, Mn-oxides, phyllosilicates) and metal ions. Our goal is to assess the relevance of these mechanisms to the formation of soil OM during different stages of decomposition and under different soil conditions. The view that OM stabilization is dominated by the selective preservation of recalcitrant organic components that accumulate in proportion to their chemical properties can no longer be accepted. In contrast, our analysis of mechanisms shows that: (i) the soil biotic community is able to disintegrate any OM of natural origin; (ii) molecular recalcitrance of OM is relative, rather than absolute; (iii) recalcitrance is only important during early decomposition and in active surface soils; while (iv) during late decomposition and in the subsoil, the relevance of spatial inaccessibility and organo-mineral interactions for SOM stabilization increases. We conclude that major difficulties in the understanding and prediction of SOM dynamics originate from the simultaneous operation of several mechanisms. We discuss knowledge gaps and promising directions of future research.

2,332 citations

Journal ArticleDOI
TL;DR: In this article, the authors summarize the recent literature about controls on dissolved organic matter (DOM) concentrations and fluxes in so-called "soil degraded organic matter" (SOCOM).
Abstract: Dissolved organic matter (DOM) in soils plays an important role in the biogeochemistry of carbon, nitrogen, and phosphorus, in pedogenesis, and in the transport of pollutants in soils. The aim of this review is to summarize the recent literature about controls on DOM concentrations and fluxes in soi

2,138 citations

Journal ArticleDOI
TL;DR: In this article, a hypothesis is formulated to explain how microorganisms may become affected by gradually increasing soil metal concentrations and this is discussed in relation to defining safe or critical soil metal loadings for soil protection.
Abstract: An increasing body of evidence suggests that microorganisms are far more sensitive to heavy metal stress than soil animals or plants growing on the same soils. Not surprisingly, most studies of heavy metal toxicity to soil microorganisms have concentrated on effects where loss of microbial function can be observed and yet such studies may mask underlying effects on biodiversity within microbial populations and communities. The types of evidence which are available for determining critical metal concentrations or loadings for microbial processes and populations in agricultural soil are assessed, particularly in relation to the agricultural use of sewage sludge. Much of the confusion in deriving critical toxic concentrations of heavy metals in soils arises from comparison of experimental results based on short-term laboratory ecotoxicological studies with results from monitoring of long-term exposures of microbial populations to heavy metals in field experiments. The laboratory studies in effect measure responses to immediate, acute toxicity (disturbance) whereas the monitoring of field experiments measures responses to long-term chronic toxicity (stress) which accumulates gradually. Laboratory ecotoxicological studies are the most easily conducted and by far the most numerous, but are difficult to extrapolate meaningfully to toxic effects likely to occur in the field. Using evidence primarily derived from long-term field experiments, a hypothesis is formulated to explain how microorganisms may become affected by gradually increasing soil metal concentrations and this is discussed in relation to defining “safe” or “critical” soil metal loadings for soil protection.

1,887 citations