scispace - formally typeset
Search or ask a question
Author

Gernot Riegler

Other affiliations: Graz University of Technology
Bio: Gernot Riegler is an academic researcher from Intel. The author has contributed to research in topics: Pose & Depth map. The author has an hindex of 18, co-authored 30 publications receiving 2199 citations. Previous affiliations of Gernot Riegler include Graz University of Technology.
Topics: Pose, Depth map, View synthesis, Deep learning, Flare

Papers
More filters
Proceedings ArticleDOI
21 Jul 2017
TL;DR: The utility of the OctNet representation is demonstrated by analyzing the impact of resolution on several 3D tasks including 3D object classification, orientation estimation and point cloud labeling.
Abstract: We present OctNet, a representation for deep learning with sparse 3D data. In contrast to existing models, our representation enables 3D convolutional networks which are both deep and high resolution. Towards this goal, we exploit the sparsity in the input data to hierarchically partition the space using a set of unbalanced octrees where each leaf node stores a pooled feature representation. This allows to focus memory allocation and computation to the relevant dense regions and enables deeper networks without compromising resolution. We demonstrate the utility of our OctNet representation by analyzing the impact of resolution on several 3D tasks including 3D object classification, orientation estimation and point cloud labeling.

1,280 citations

Posted Content
TL;DR: A parametrization issue involved in applying NeRF to 360 captures of objects within large-scale, unbounded 3D scenes is addressed, and the method improves view synthesis fidelity in this challenging scenario.
Abstract: Neural Radiance Fields (NeRF) achieve impressive view synthesis results for a variety of capture settings, including 360 capture of bounded scenes and forward-facing capture of bounded and unbounded scenes. NeRF fits multi-layer perceptrons (MLPs) representing view-invariant opacity and view-dependent color volumes to a set of training images, and samples novel views based on volume rendering techniques. In this technical report, we first remark on radiance fields and their potential ambiguities, namely the shape-radiance ambiguity, and analyze NeRF's success in avoiding such ambiguities. Second, we address a parametrization issue involved in applying NeRF to 360 captures of objects within large-scale, unbounded 3D scenes. Our method improves view synthesis fidelity in this challenging scenario. Code is available at this https URL.

413 citations

Posted Content
TL;DR: OctNet as mentioned in this paper exploits the sparsity in the input data to hierarchically partition the space using a set of unbalanced octrees where each leaf node stores a pooled feature representation, which enables 3D convolutional networks which are both deep and high resolution.
Abstract: We present OctNet, a representation for deep learning with sparse 3D data. In contrast to existing models, our representation enables 3D convolutional networks which are both deep and high resolution. Towards this goal, we exploit the sparsity in the input data to hierarchically partition the space using a set of unbalanced octrees where each leaf node stores a pooled feature representation. This allows to focus memory allocation and computation to the relevant dense regions and enables deeper networks without compromising resolution. We demonstrate the utility of our OctNet representation by analyzing the impact of resolution on several 3D tasks including 3D object classification, orientation estimation and point cloud labeling.

291 citations

Book ChapterDOI
Gernot Riegler1, Vladlen Koltun1
23 Aug 2020
TL;DR: This work presents a method for novel view synthesis from input images that are freely distributed around a scene that can synthesize images for free camera movement through the scene, and works for general scenes with unconstrained geometric layouts.
Abstract: We present a method for novel view synthesis from input images that are freely distributed around a scene. Our method does not rely on a regular arrangement of input views, can synthesize images for free camera movement through the scene, and works for general scenes with unconstrained geometric layouts. We calibrate the input images via SfM and erect a coarse geometric scaffold via MVS. This scaffold is used to create a proxy depth map for a novel view of the scene. Based on this depth map, a recurrent encoder-decoder network processes reprojected features from nearby views and synthesizes the new view. Our network does not need to be optimized for a given scene. After training on a dataset, it works in previously unseen environments with no fine-tuning or per-scene optimization. We evaluate the presented approach on challenging real-world datasets, including Tanks and Temples, where we demonstrate successful view synthesis for the first time and substantially outperform prior and concurrent work.

207 citations

Proceedings ArticleDOI
04 Apr 2017
TL;DR: In this article, a learning-based approach to depth fusion is proposed, which is able to reconstruct (partially) occluded surfaces and fill in gaps in the reconstruction by learning the structure of real world 3D objects and scenes.
Abstract: In this paper, we present a learning based approach to depth fusion, i.e., dense 3D reconstruction from multiple depth images. The most common approach to depth fusion is based on averaging truncated signed distance functions, which was originally proposed by Curless and Levoy in 1996. While this method is simple and provides great results, it is not able to reconstruct (partially) occluded surfaces and requires a large number frames to filter out sensor noise and outliers. Motivated by the availability of large 3D model repositories and recent advances in deep learning, we present a novel 3D CNN architecture that learns to predict an implicit surface representation from the input depth maps. Our learning based method significantly outperforms the traditional volumetric fusion approach in terms of noise reduction and outlier suppression. By learning the structure of real world 3D objects and scenes, our approach is further able to reconstruct occluded regions and to fill in gaps in the reconstruction. We demonstrate that our learning based approach outperforms both vanilla TSDF fusion as well as TV-L1 fusion on the task of volumetric fusion. Further, we demonstrate state-of-the-art 3D shape completion results.

201 citations


Cited by
More filters
Posted Content
TL;DR: A hierarchical neural network that applies PointNet recursively on a nested partitioning of the input point set and proposes novel set learning layers to adaptively combine features from multiple scales to learn deep point set features efficiently and robustly.
Abstract: Few prior works study deep learning on point sets. PointNet by Qi et al. is a pioneer in this direction. However, by design PointNet does not capture local structures induced by the metric space points live in, limiting its ability to recognize fine-grained patterns and generalizability to complex scenes. In this work, we introduce a hierarchical neural network that applies PointNet recursively on a nested partitioning of the input point set. By exploiting metric space distances, our network is able to learn local features with increasing contextual scales. With further observation that point sets are usually sampled with varying densities, which results in greatly decreased performance for networks trained on uniform densities, we propose novel set learning layers to adaptively combine features from multiple scales. Experiments show that our network called PointNet++ is able to learn deep point set features efficiently and robustly. In particular, results significantly better than state-of-the-art have been obtained on challenging benchmarks of 3D point clouds.

4,802 citations

Proceedings ArticleDOI
15 Jun 2019
TL;DR: DeepSDF as mentioned in this paper represents a shape's surface by a continuous volumetric field: the magnitude of a point in the field represents the distance to the surface boundary and the sign indicates whether the region is inside (-) or outside (+) of the shape.
Abstract: Computer graphics, 3D computer vision and robotics communities have produced multiple approaches to representing 3D geometry for rendering and reconstruction. These provide trade-offs across fidelity, efficiency and compression capabilities. In this work, we introduce DeepSDF, a learned continuous Signed Distance Function (SDF) representation of a class of shapes that enables high quality shape representation, interpolation and completion from partial and noisy 3D input data. DeepSDF, like its classical counterpart, represents a shape's surface by a continuous volumetric field: the magnitude of a point in the field represents the distance to the surface boundary and the sign indicates whether the region is inside (-) or outside (+) of the shape, hence our representation implicitly encodes a shape's boundary as the zero-level-set of the learned function while explicitly representing the classification of space as being part of the shapes interior or not. While classical SDF's both in analytical or discretized voxel form typically represent the surface of a single shape, DeepSDF can represent an entire class of shapes. Furthermore, we show state-of-the-art performance for learned 3D shape representation and completion while reducing the model size by an order of magnitude compared with previous work.

2,247 citations

Proceedings ArticleDOI
18 Jun 2018
TL;DR: This work directly operates on raw point clouds by popping up RGBD scans and leverages both mature 2D object detectors and advanced 3D deep learning for object localization, achieving efficiency as well as high recall for even small objects.
Abstract: In this work, we study 3D object detection from RGBD data in both indoor and outdoor scenes. While previous methods focus on images or 3D voxels, often obscuring natural 3D patterns and invariances of 3D data, we directly operate on raw point clouds by popping up RGB-D scans. However, a key challenge of this approach is how to efficiently localize objects in point clouds of large-scale scenes (region proposal). Instead of solely relying on 3D proposals, our method leverages both mature 2D object detectors and advanced 3D deep learning for object localization, achieving efficiency as well as high recall for even small objects. Benefited from learning directly in raw point clouds, our method is also able to precisely estimate 3D bounding boxes even under strong occlusion or with very sparse points. Evaluated on KITTI and SUN RGB-D 3D detection benchmarks, our method outperforms the state of the art by remarkable margins while having real-time capability.

1,947 citations

Proceedings ArticleDOI
07 Jun 2015
TL;DR: A novel model and dataset for 3D scene flow estimation with an application to autonomous driving by representing each element in the scene by its rigid motion parameters and each superpixel by a 3D plane as well as an index to the corresponding object.
Abstract: This paper proposes a novel model and dataset for 3D scene flow estimation with an application to autonomous driving. Taking advantage of the fact that outdoor scenes often decompose into a small number of independently moving objects, we represent each element in the scene by its rigid motion parameters and each superpixel by a 3D plane as well as an index to the corresponding object. This minimal representation increases robustness and leads to a discrete-continuous CRF where the data term decomposes into pairwise potentials between superpixels and objects. Moreover, our model intrinsically segments the scene into its constituting dynamic components. We demonstrate the performance of our model on existing benchmarks as well as a novel realistic dataset with scene flow ground truth. We obtain this dataset by annotating 400 dynamic scenes from the KITTI raw data collection using detailed 3D CAD models for all vehicles in motion. Our experiments also reveal novel challenges which cannot be handled by existing methods.

1,918 citations

Journal ArticleDOI
TL;DR: In this paper, the authors proposed a deep convolutional neural network (CNN)-based algorithm for solving ill-posed inverse problems, which combines multiresolution decomposition and residual learning in order to learn to remove these artifacts while preserving image structure.
Abstract: In this paper, we propose a novel deep convolutional neural network (CNN)-based algorithm for solving ill-posed inverse problems. Regularized iterative algorithms have emerged as the standard approach to ill-posed inverse problems in the past few decades. These methods produce excellent results, but can be challenging to deploy in practice due to factors including the high computational cost of the forward and adjoint operators and the difficulty of hyperparameter selection. The starting point of this paper is the observation that unrolled iterative methods have the form of a CNN (filtering followed by pointwise non-linearity) when the normal operator ( $H^{*}H$ , where $H^{*}$ is the adjoint of the forward imaging operator, $H$ ) of the forward model is a convolution. Based on this observation, we propose using direct inversion followed by a CNN to solve normal-convolutional inverse problems. The direct inversion encapsulates the physical model of the system, but leads to artifacts when the problem is ill posed; the CNN combines multiresolution decomposition and residual learning in order to learn to remove these artifacts while preserving image structure. We demonstrate the performance of the proposed network in sparse-view reconstruction (down to 50 views) on parallel beam X-ray computed tomography in synthetic phantoms as well as in real experimental sinograms. The proposed network outperforms total variation-regularized iterative reconstruction for the more realistic phantoms and requires less than a second to reconstruct a $512\times 512$ image on the GPU.

1,757 citations