scispace - formally typeset
Search or ask a question
Author

Gerson Araujo de Medeiros

Bio: Gerson Araujo de Medeiros is an academic researcher from Sao Paulo State University. The author has contributed to research in topics: Life-cycle assessment & Crop coefficient. The author has an hindex of 11, co-authored 53 publications receiving 613 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors select and report on recent trends in nanomaterial-based systems and nanodevices that could provide benefits on the food supply chain specifically on sustainable intensification, and management of soil and waste.
Abstract: Recent scientific data indicate that nanotechnology has the potential to positively impact the agrifood sector, minimizing adverse problems of agricultural practices on environment and human health, improving food security and productivity (as required by the predicted rise in global population), while promoting social and economic equity. In this context, we select and report on recent trends in nanomaterial-based systems and nanodevices that could provide benefits on the food supply chain specifically on sustainable intensification, and management of soil and waste. Among others, nanomaterials for controlled-release of nutrients, pesticides and fertilizers in crops are described as well as nanosensors for agricultural practices, food quality and safety.

348 citations

Journal ArticleDOI
TL;DR: In this paper, the effect of crop development on evapotranspiration and yield of beans (Phaseolus vulgaris L.) at the Instituto Agronomico (IAC), Campinas, State of Sao Paulo, Brazil, during the dry season of 1994 was investigated.

76 citations

Journal ArticleDOI
TL;DR: In this article, the authors developed a method to analyze municipal solid waste management systems (MSWMS) that integrates environmental and economic indicators using Life Cycle Assessment (LCA) and Life Cycle Costing (LCC).

76 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present a holistic sustainability evaluation using life cycle assessment to compare combinations of integrated and conventional systems in the Brazilian Cerrado region, and assesses a comprehensive set of indicators in the three sustainability dimensions: environmental, economic, and social (socio-eco-efficiency).

69 citations

Journal ArticleDOI
TL;DR: In this paper, a comparison is made of Eo estimates by Penman-Monteith, Class A evaporation pan and measured water consumption of grass to generate crop curves of water consumption to manage irrigation for several crops.

37 citations


Cited by
More filters
Journal Article
TL;DR: This study reviews several of the most commonly used inductive teaching methods, including inquiry learning, problem-based learning, project-basedLearning, case-based teaching, discovery learning, and just-in-time teaching, and defines each method, highlights commonalities and specific differences, and reviews research on the effectiveness.
Abstract: Traditional engineering instruction is deductive, beginning with theories and progressing to the applications of those theories Alternative teaching approaches are more inductive Topics are introduced by presenting specific observations, case studies or problems, and theories are taught or the students are helped to discover them only after the need to know them has been established This study reviews several of the most commonly used inductive teaching methods, including inquiry learning, problem-based learning, project-based learning, case-based teaching, discovery learning, and just-in-time teaching The paper defines each method, highlights commonalities and specific differences, and reviews research on the effectiveness of the methods While the strength of the evidence varies from one method to another, inductive methods are consistently found to be at least equal to, and in general more effective than, traditional deductive methods for achieving a broad range of learning outcomes

1,673 citations

Journal ArticleDOI
TL;DR: The current challenges of sustainability, food security and climate change that are exploring by the researchers in the area of nanotechnology in the improvement of agriculture are covered.
Abstract: Nanotechnology monitors a leading agricultural controlling process, especially by its miniature dimension. The application of nanotechnology to agriculture and food industries is resonant increased encumbrance because of the potential benefits ranging from enhanced food quality, safety to reduced agricultural inputs and enriched absorbing nanoscale nutrients from the soil. Agriculture, food and natural resources are a part of those challenges like sustainability, susceptibility, human health and healthy life. The ambition of nanomaterials in agriculture is to reduce the amount of spread chemicals, minimize nutrient losses in fertilization and increased yield through pest and nutrient management. Nanotechnology has the prospective to improve the agriculture and food industry with novel nanotools for the controlling of rapid disease diagnostic, enhancing the capacity of plants to absorb nutrients among others. The significant interest of using nanotechnology in agriculture includes specific applications like nanofertilizers and nanopesticides to trail products and nutrients levels to increase the productivity without decontamination of soils, waters and protection against several insect pest and microbial diseases. Nanotechnology may act as sensors for monitoring soil quality of agricultural field and thus it maintain the health of agricultural plants.This study provides a review of the current challenges of sustainability, food security and climate change that are exploring by the researchers in the area of nanotechnology in the improvement of agriculture.

813 citations

Journal ArticleDOI
TL;DR: Recent attempts at innovative uses of nanotechnologies in agriculture that may help to meet the rising demand for food and environmental sustainability are summarized.
Abstract: In the era of climate change, global agricultural systems are facing numerous, unprecedented challenges. In order to achieve food security, advanced nano-engineering is a handy tool for boosting crop production and assuring sustainability. Nanotechnology helps to improve agricultural production by increasing the efficiency of inputs and minimizing relevant losses. Nanomaterials offer a wider specific surface area to fertilizers and pesticides. In addition, nanomaterials as unique carriers of agrochemicals facilitate the site-targeted controlled delivery of nutrients with increased crop protection. Due to their direct and intended applications in the precise management and control of inputs (fertilizers, pesticides, herbicides), nanotools, such as nanobiosensors, support the development of high-tech agricultural farms. The integration of biology and nanotechnology into nonosensors has greatly increased their potential to sense and identify the environmental conditions or impairments. In this review, we summarize recent attempts at innovative uses of nanotechnologies in agriculture that may help to meet the rising demand for food and environmental sustainability.

487 citations

Journal ArticleDOI
TL;DR: This review examines the research performed in the last decade to show how metal and metal oxide nanoparticles are influencing the plant metabolism and proposed oxidative burst as a general mechanism through which the toxic effects of nanoparticle are spread in plants.
Abstract: An increasing need of nanotechnology in various industries may cause a huge environment dispersion of nanoparticles in coming years. A concern about nanoparticles interaction with flora and fauna is raised due to a growing load of it in the environment. In recent years, several investigators have shown impact of nanoparticles on plant growth and their accumulation in food source. This review examines the research performed in the last decade to show how metal and metal oxide nanoparticles are influencing the plant metabolism. We addressed here, the impact of nanoparticle on plant in relation to its size, concentration, and exposure methodology. Based on the available reports, we proposed oxidative burst as a general mechanism through which the toxic effects of nanoparticles are spread in plants. This review summarizes the current understanding and the future possibilities of plant-nanoparticle research.

474 citations

Journal ArticleDOI
TL;DR: This Review presents the possible applications of nanotechnology in the agri-business sector and considers performance data from patents and unpublished sources so as to define the scope of what can be realistically achieved.
Abstract: Various nano-enabled strategies are proposed to improve crop production and meet the growing global demands for food, feed and fuel while practising sustainable agriculture. After providing a brief overview of the challenges faced in the sector of crop nutrition and protection, this Review presents the possible applications of nanotechnology in this area. We also consider performance data from patents and unpublished sources so as to define the scope of what can be realistically achieved. In addition to being an industry with a narrow profit margin, agricultural businesses have inherent constraints that must be carefully considered and that include existing (or future) regulations, as well as public perception and acceptance. Directions are also identified to guide future research and establish objectives that promote the responsible and sustainable development of nanotechnology in the agri-business sector.

428 citations