scispace - formally typeset
Search or ask a question
Author

Gerson Nakazato

Bio: Gerson Nakazato is an academic researcher from Universidade Estadual de Londrina. The author has contributed to research in topics: Escherichia coli & Antimicrobial. The author has an hindex of 26, co-authored 105 publications receiving 2553 citations. Previous affiliations of Gerson Nakazato include University of Santiago de Compostela & State University of Campinas.


Papers
More filters
Journal ArticleDOI
TL;DR: This overview incorporates a retrospective of previous reviews published from 2007 to 2013 and recent original contributions on the progress of research on antimicrobial mechanisms to summarize the current knowledge in the field of antibacterial activity of silver nanoparticles.

1,055 citations

Journal ArticleDOI
TL;DR: To have relevant results on antimicrobial effects of biogenic silver-based nanoparticles, it is necessary to have a complete and adequate characterization of these nanostructures, followed by standard methodology in microbiology protocols.
Abstract: The antimicrobial impact of biogenic-synthesized silver-based nanoparticles has been the focus of increasing interest. As the antimicrobial activity of nanoparticles is highly dependent on their size and surface, the complete and adequate characterization of the nanoparticle is important. This review discusses the characterization and antimicrobial activity of biogenic synthesized silver nanoparticles and silver chloride nanoparticles. By revising the literature, there is confusion in the characterization of these two silver-based nanoparticles, which consequently affects the conclusion regarding to their antimicrobial activities. This review critically analyzes recent publications on the synthesis of biogenic silver nanoparticles and silver chloride nanoparticles by attempting to correlate the characterization of the nanoparticles with their antimicrobial activity. It was difficult to correlate the size of biogenic nanoparticles with their antimicrobial activity, since different techniques are employed for the characterization. Biogenic synthesized silver-based nanoparticles are not completely characterized, particularly the nature of capped proteins covering the nanomaterials. Moreover, the antimicrobial activity of theses nanoparticles is assayed by using different protocols and strains, which difficult the comparison among the published papers. It is important to select some bacteria as standards, by following international foundations (Pharmaceutical Microbiology Manual) and use the minimal inhibitory concentration by broth microdilution assays from Clinical and Laboratory Standards Institute, which is the most common assay used in antibiotic ones. Therefore, we conclude that to have relevant results on antimicrobial effects of biogenic silver-based nanoparticles, it is necessary to have a complete and adequate characterization of these nanostructures, followed by standard methodology in microbiology protocols.

190 citations

Journal ArticleDOI
TL;DR: This study describes for the first time the synergistic and additive interaction between OEO and bio-AgNP produced by F. oxysporum against multidrug-resistant bacteria, such as MRSA, and β-lactamase- and carbapenemase-producing Escherichia coli and Acinetobacter baumannii strains.
Abstract: Bacterial resistance to conventional antibiotics has become a clinical and public health problem, making therapeutic decisions more challenging Plant compounds and nanodrugs have been proposed as potential antimicrobial alternatives Studies have shown that oregano (Origanum vulgare) essential oil (OEO) and silver nanoparticles have potent antibacterial activity, also against multidrug-resistant strains; however, the strong organoleptic characteristics of OEO and the development of resistance to these metal nanoparticles can limit their use This study evaluated the antibacterial effect of a two-drug combination of biologically synthesized silver nanoparticles (bio-AgNP), produced by Fusarium oxysporum, and OEO against Gram-positive and Gram-negative bacteria, including multidrug-resistant strains OEO and bio-AgNP showed bactericidal effects against all 17 strains tested, with minimal inhibitory concentrations (MIC) ranging from 0298 to 1193 mg/mL and 625 to 250 μM, respectively Time-kill curves indicated that OEO acted rapidly (within 10 min), while the metallic nanoparticles took 4 h to kill Gram-negative bacteria and 24 h to kill Gram-positive bacteria The combination of the two compounds resulted in a synergistic or additive effect, reducing their MIC values and reducing the time of action compared to bio-AgNP used alone, ie, 20 min for Gram-negative bacteria and 7 h for Gram-positive bacteria Scanning electron microscopy (SEM) revealed similar morphological alterations in Staphylococcus aureus (non-methicillin-resistant S aureus, non-MRSA) cells exposed to three different treatments (OEO, bio-AgNP and combination of the two), which appeared cell surface blebbing Individual and combined treatments showed reduction in cell density and decrease in exopolysaccharide matrix compared to untreated bacterial cells It indicated that this composition have an antimicrobial activity against S aureus by disrupting cells Both compounds showed very low hemolytic activity, especially at MIC levels This study describes for the first time the synergistic and additive interaction between OEO and bio-AgNP produced by F oxysporum against multidrug-resistant bacteria, such as MRSA, and β-lactamase- and carbapenemase-producing Escherichia coli and Acinetobacter baumannii strains These results indicated that this combination can be an alternative in the control of infections with few or no treatment options

119 citations

Journal ArticleDOI
TL;DR: Assessment of the antifungal activity of biogenic silver nanoparticles (AgNPs, synthesized by fungi) and simvastatin (SIM, a semi-synthetic drug) alone and in combination against toxigenic species of Aspergillus reveals potential benefits of using combination of AgNPs and SIM to control fungal growth.

115 citations

Journal ArticleDOI
TL;DR: This review on violacein focuses mainly on the last five years of research regarding this target compound and describes production and importance of quorum sensing in C. violaceum, mechanistic aspects of its biosynthesis, monitoring processes, genetic perspectives, pathogenic effects, antiparasitic and antimicrobial activities, immunomodulatory potential and uses, antitumor potential and industrial applications.

109 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The goal of this Consensus Statement is to engender appropriate use of the term 'prebiotic' by relevant stakeholders so that consistency and clarity can be achieved in research reports, product marketing and regulatory oversight of the category.
Abstract: With the continued interest in the role of the gut microbiota in health, attention has now turned to how to harness the microbiota for the benefit of the host. This Consensus Statement outlines the definition and scope of the term 'prebiotic' as determined by an expert panel convened by the International Scientific Association for Probiotics and Prebiotics in December 2016. In December 2016, a panel of experts in microbiology, nutrition and clinical research was convened by the International Scientific Association for Probiotics and Prebiotics to review the definition and scope of prebiotics. Consistent with the original embodiment of prebiotics, but aware of the latest scientific and clinical developments, the panel updated the definition of a prebiotic: a substrate that is selectively utilized by host microorganisms conferring a health benefit. This definition expands the concept of prebiotics to possibly include non-carbohydrate substances, applications to body sites other than the gastrointestinal tract, and diverse categories other than food. The requirement for selective microbiota-mediated mechanisms was retained. Beneficial health effects must be documented for a substance to be considered a prebiotic. The consensus definition applies also to prebiotics for use by animals, in which microbiota-focused strategies to maintain health and prevent disease is as relevant as for humans. Ultimately, the goal of this Consensus Statement is to engender appropriate use of the term 'prebiotic' by relevant stakeholders so that consistency and clarity can be achieved in research reports, product marketing and regulatory oversight of the category. To this end, we have reviewed several aspects of prebiotic science including its development, health benefits and legislation.

2,863 citations

Journal ArticleDOI
01 Mar 1941-Nature
TL;DR: In this article, Gray has written a book on diseases of poultry, Diseases of Poultry Their Aetiology, Diagnosis, Treatment and Control; with a Section on the Normal Anatomy and Physiology of the Fowl.
Abstract: VERY few veterinary surgeons have thought fit to write a book on diseases of poultry. Mr. Ernest Gray has done justice to the subject and is to be congratulated on his effort. A book of this size, written by one with specialized knowledge, will add to the value of any library or private bookshelf. Diseases of Poultry Their Aetiology, Diagnosis, Treatment and Control; with a Section on the Normal Anatomy and Physiology of the Fowl. By Ernest Gray. (Lockwood's Agricultural and Horticultural Handbooks.) Pp. x + 198 + 16 plates. (London: Crosby Lockwood and Son, Ltd., 1940.) 9s. 6d. net.

1,282 citations

Journal ArticleDOI
TL;DR: This overview incorporates a retrospective of previous reviews published from 2007 to 2013 and recent original contributions on the progress of research on antimicrobial mechanisms to summarize the current knowledge in the field of antibacterial activity of silver nanoparticles.

1,055 citations

Journal ArticleDOI
TL;DR: This review has gathered information on current definitions, serotypes, lineages, virulence mechanisms, epidemiology, and diagnosis of the major diarrheagenic E. coli pathotypes.

896 citations

Journal ArticleDOI
TL;DR: This review focused on the latest data regarding the biomedical use of AgNP-based nanostructures, including aspects related to their potential toxicity, unique physiochemical properties, and biofunctional behaviors, discussing herein the intrinsic anti-inflammatory, antibacterial, antiviral, and antifungal activities of silver-based Nanostructure.
Abstract: During the past few years, silver nanoparticles (AgNPs) became one of the most investigated and explored nanotechnology-derived nanostructures, given the fact that nanosilver-based materials proved to have interesting, challenging, and promising characteristics suitable for various biomedical applications. Among modern biomedical potential of AgNPs, tremendous interest is oriented toward the therapeutically enhanced personalized healthcare practice. AgNPs proved to have genuine features and impressive potential for the development of novel antimicrobial agents, drug-delivery formulations, detection and diagnosis platforms, biomaterial and medical device coatings, tissue restoration and regeneration materials, complex healthcare condition strategies, and performance-enhanced therapeutic alternatives. Given the impressive biomedical-related potential applications of AgNPs, impressive efforts were undertaken on understanding the intricate mechanisms of their biological interactions and possible toxic effects. Within this review, we focused on the latest data regarding the biomedical use of AgNP-based nanostructures, including aspects related to their potential toxicity, unique physiochemical properties, and biofunctional behaviors, discussing herein the intrinsic anti-inflammatory, antibacterial, antiviral, and antifungal activities of silver-based nanostructures.

773 citations