scispace - formally typeset
Search or ask a question
Author

Gert-Jan Reichart

Bio: Gert-Jan Reichart is an academic researcher from Utrecht University. The author has contributed to research in topics: Sea surface temperature & Foraminifera. The author has an hindex of 56, co-authored 293 publications receiving 10908 citations. Previous affiliations of Gert-Jan Reichart include Alfred Wegener Institute for Polar and Marine Research.


Papers
More filters
Journal ArticleDOI
01 Jun 2006-Nature
TL;DR: It is shown that sea surface temperatures near the North Pole increased from ∼18 °C to over 23‬°C during this event, which suggests that higher-than-modern greenhouse gas concentrations must have operated in conjunction with other feedback mechanisms—perhaps polar stratospheric clouds or hurricane-induced ocean mixing—to amplify early Palaeogene polar temperatures.
Abstract: The Palaeocene/Eocene thermal maximum, ~55 million years ago, was a brief period of widespread, extreme climatic warming1, 2, 3, that was associated with massive atmospheric greenhouse gas input4. Although aspects of the resulting environmental changes are well documented at low latitudes, no data were available to quantify simultaneous changes in the Arctic region. Here we identify the Palaeocene/Eocene thermal maximum in a marine sedimentary sequence obtained during the Arctic Coring Expedition5. We show that sea surface temperatures near the North Pole increased from ~18 °C to over 23 °C during this event. Such warm values imply the absence of ice and thus exclude the influence of ice-albedo feedbacks on this Arctic warming. At the same time, sea level rose while anoxic and euxinic conditions developed in the ocean's bottom waters and photic zone, respectively. Increasing temperature and sea level match expectations based on palaeoclimate model simulations6, but the absolute polar temperatures that we derive before, during and after the event are more than 10 °C warmer than those model-predicted. This suggests that higher-than-modern greenhouse gas concentrations must have operated in conjunction with other feedback mechanisms—perhaps polar stratospheric clouds7 or hurricane-induced ocean mixing8—to amplify early Palaeogene polar temperatures.

652 citations

Journal ArticleDOI
08 Oct 2009-Nature
TL;DR: This work presents a uniquely continuous and chronostratigraphically well-calibrated TEX86 record of sea surface temperature (SST) from an ocean sediment core in the East Tasman Plateau, and shows that southwest Pacific SSTs rose above present-day tropical values and had gradually decreased to about 21 °C by the early Late Eocene age.
Abstract: Relative to the present day, meridional temperature gradients in the Early Eocene age ( approximately 56-53 Myr ago) were unusually low, with slightly warmer equatorial regions but with much warmer subtropical Arctic and mid-latitude climates. By the end of the Eocene epoch ( approximately 34 Myr ago), the first major Antarctic ice sheets had appeared, suggesting that major cooling had taken place. Yet the global transition into this icehouse climate remains poorly constrained, as only a few temperature records are available portraying the Cenozoic climatic evolution of the high southern latitudes. Here we present a uniquely continuous and chronostratigraphically well-calibrated TEX(86) record of sea surface temperature (SST) from an ocean sediment core in the East Tasman Plateau (palaeolatitude approximately 65 degrees S). We show that southwest Pacific SSTs rose above present-day tropical values (to approximately 34 degrees C) during the Early Eocene age ( approximately 53 Myr ago) and had gradually decreased to about 21 degrees C by the early Late Eocene age ( approximately 36 Myr ago). Our results imply that there was almost no latitudinal SST gradient between subequatorial and subpolar regions during the Early Eocene age (55-50 Myr ago). Thereafter, the latitudinal gradient markedly increased. In theory, if Eocene cooling was largely driven by a decrease in atmospheric greenhouse gas concentration, additional processes are required to explain the relative stability of tropical SSTs given that there was more significant cooling at higher latitudes.

347 citations

Journal ArticleDOI
TL;DR: In this paper, the distribution of glycerol dialkyl glyceroline tetraethers (GDGTs) in water column particulate matter and the top 5 cm of sediment from 47 lakes along a transect from southern Italy to the northern part of Scandinavia was investigated.
Abstract: We studied the distribution of glycerol dialkyl glycerol tetraethers (GDGTs) in water-column particulate matter and the top 5 cm of sediment from 47 lakes along a transect from southern Italy to the northern part of Scandinavia. Our objective was to investigate the biological sources and potential palaeoenvironmental applications of GDGTs in lacustrine sediments. Both archaea-derived isoprenoid and bacteria-derived branched GDGTs, produced by yet unknown soil bacteria, were identified in all lake sediments. GDGT distributions varied substantially. Crenarchaeotal GDGTs, including the characteristic GDGT crenarchaeol, were found in varying relative concentrations, and were more dominant in lakes from the Alps and some of the lakes from the more southern part of the latitudinal transect. In some lakes, we observed high amounts of the GDGT with no cyclopentane moieties relative to crenarchaeol. As methanogenic Euryarchaeota are known to biosynthesise this GDGT predominantly, these Archaea, rather than Crenarchaeota, may be its dominant biological source. In most of the lakes, high amounts of soil-bacteria-derived, branched GDGTs (>40% of total GDGTs) indicated a substantial contribution from soil erosion. Branched GDGTs dominated, especially in the northern lakes, possibly related to high soil-erosion rates. In many of the lakes, soil input affects the distribution of isoprenoidal GDGTs and prevents the reliable application of the TEX86 temperature proxy for lake water temperature, which is based on in situ crenarchaeotal GDGTs production. In 9 out of the 47 lakes studied, the TEX86 temperature proxy could be used reliably. When we compared the TEX86 correlation with annual and winter lake-surface temperature, respectively, the relationship between TEX86 and winter temperature was slightly stronger. This may indicate the season in which these GDGT-producing organisms have their peak production.

336 citations

Journal ArticleDOI
20 Dec 2007-Nature
TL;DR: The lag of ∼3,000 years between the onset of warming in New Jersey shelf waters and the carbon isotope excursion is consistent with the hypothesis that bottom water warming caused the injection of 13C-depleted carbon by triggering the dissociation of submarine methane hydrates, but the cause of the early warming remains uncertain.
Abstract: The Palaeocene/Eocene thermal maximum — a period of intense global warming about 55 million years ago — was associated with a massive release of isotopically distinctive greenhouse gases into the ocean-atmosphere system. It remains unclear, however, whether this input caused or resulted from the global warming and environmental change that characterize the event. Sluijs et al. use high-resolution records of environmental change across the Palaeocene/Eocene boundary from two sediment sections in New Jersey to shed light on this question. They find that the onset of environmental change and surface-ocean warming preceded the input of greenhouse gases by several thousand years at this location. This sequence of events is consistent with the proposal that deep-ocean warming caused the dissociation of submarine gas hydrates, releasing massive amounts of the greenhouse gas methane. But the cause of the early warming remains uncertain. Exceptionally high resolution records of environmental change across the Palaeocene/Eocene boundary from two sediment sections in New Jersey find that the onset of environmental change and surface–ocean warming preceded the input of greenhouse gases by several thousand years. This sequence is consistent with the proposal that warming of the deep ocean caused the dissociation of submarine gas hydrates, which released massive amounts of methane. The start of the Palaeocene/Eocene thermal maximum—a period of exceptional global warming about 55 million years ago—is marked by a prominent negative carbon isotope excursion that reflects a massive input of 13C-depleted (‘light’) carbon to the ocean–atmosphere system1. It is often assumed2 that this carbon injection initiated the rapid increase in global surface temperatures and environmental change that characterize the climate perturbation3,4,5,6,7, but the exact sequence of events remains uncertain. Here we present chemical and biotic records of environmental change across the Palaeocene/Eocene boundary from two sediment sections in New Jersey that have high sediment accumulation rates. We show that the onsets of environmental change (as recorded by the abundant occurrence (‘acme’) of the dinoflagellate cyst Apectodinium) and of surface-ocean warming (as evidenced by the palaeothermometer TEX86) preceded the light carbon injection by several thousand years. The onset of the Apectodinium acme also precedes the carbon isotope excursion in sections from the southwest Pacific Ocean8 and the North Sea, indicating that the early onset of environmental change was not confined to the New Jersey shelf. The lag of ∼3,000 years between the onset of warming in New Jersey shelf waters and the carbon isotope excursion is consistent with the hypothesis that bottom water warming caused the injection of 13C-depleted carbon by triggering the dissociation of submarine methane hydrates1,9,10, but the cause of the early warming remains uncertain.

317 citations

Journal ArticleDOI
TL;DR: The oxygen minimum zone (OMZ) has been reconstructed over the past 225,000 years using proxies for surface water productivity, water column denitrification, winter mixing, and the aragonite compensation depth (ACD) as discussed by the authors.
Abstract: The northern Arabian Sea is one of the few regions in the open ocean where thermocline water is severely depleted in oxygen. The intensity of this oxygen minimum zone (OMZ) has been reconstructed over the past 225,000 years using proxies for surface water productivity, water column denitrification, winter mixing, and the aragonite compensation depth (ACD). Changes in OMZ intensity occurred on orbital and suborbital timescales. Lowest O2 levels correlate with productivity maxima and shallow winter mixing. Precession-related productivity maxima lag early summer insolation maxima by ∼6 kyr, which we attribute to a prolonged summer monsoon season related to higher insolation at the end of the summer. Periods with a weakened or even non-existent OMZ are characterized by low productivity conditions and deep winter mixing attributed to strong and cold winter monsoonal winds. The timing of deep winter mixing events corresponds with that of periods of climatic cooling in the North Atlantic region.

285 citations


Cited by
More filters
Journal Article
TL;DR: In this article, the authors present a document, redatto, voted and pubblicato by the Ipcc -Comitato intergovernativo sui cambiamenti climatici - illustra la sintesi delle ricerche svolte su questo tema rilevante.
Abstract: Cause, conseguenze e strategie di mitigazione Proponiamo il primo di una serie di articoli in cui affronteremo l’attuale problema dei mutamenti climatici. Presentiamo il documento redatto, votato e pubblicato dall’Ipcc - Comitato intergovernativo sui cambiamenti climatici - che illustra la sintesi delle ricerche svolte su questo tema rilevante.

4,187 citations

Journal ArticleDOI
TL;DR: In this paper, a theoretical basis for maximum TC intensity appears now to be well established, but a climate theory of TC formation remains elusive Climate models mostly continue to predict future decreases in global TC numbers, projected increases in the intensities of the strongest storms and increased rainfall rates Sea level rise will likely contribute toward increased storm surge risk.
Abstract: Recent research has strengthened the understanding of the links between climate and tropical cyclones (TCs) on various timescales Geological records of past climates have shown century-long variations in TC numbers While no significant trends have been identified in the Atlantic since the late 19th century, significant observed trends in TC numbers and intensities have occurred in this basin over the past few decades, and trends in other basins are increasingly being identified However, understanding of the causes of these trends is incomplete, and confidence in these trends continues to be hampered by a lack of consistent observations in some basins A theoretical basis for maximum TC intensity appears now to be well established, but a climate theory of TC formation remains elusive Climate models mostly continue to predict future decreases in global TC numbers, projected increases in the intensities of the strongest storms and increased rainfall rates Sea level rise will likely contribute toward increased storm surge risk Against the background of global climate change and sea level rise, it is important to carry out quantitative assessments on the potential risk of TC-induced storm surge and flooding to densely populated cities and river deltas Several climate models are now able to generate a good distribution of both TC numbers and intensities in the current climate Inconsistent TC projection results emerge from modeling studies due to different downscaling methodologies and warming scenarios, inconsistencies in projected changes of large-scale conditions, and differences in model physics and tracking algorithms WIREs Clim Change 2016, 7:65–89 doi: 101002/wcc371 For further resources related to this article, please visit the WIREs website

1,496 citations

Book
01 Jan 2006
TL;DR: This book presents the ecological background required to explain how fossil forms are used in dating rocks and reconstructing past environmental features including changes of sea level and demonstrates how living foraminifera can be used to monitor modern-day environmental change.
Abstract: In this volume John Murray investigates the ecological processes that control the distribution, abundance, and species diversity of benthic foraminifera in environments ranging from marsh to the deepest ocean. To interpret the fossil record it is necessary to have an understanding of the ecology of modern foraminifera and the processes operating after death leading to burial and fossilisation. This book presents the ecological background required to explain how fossil forms are used in dating rocks and reconstructing past environmental features including changes of sea level. It demonstrates how living foraminifera can be used to monitor modern-day environmental change. Ecology and Applications of Benthic Foraminifera presents a comprehensive and global coverage of the subject using all the available literature. It is supported by a website hosting a large database of additional ecological information (www.cambridge.org/0521828392) and will form an important reference for academic researchers and graduate students in Earth and Environmental Sciences.

1,479 citations

Book ChapterDOI
01 Jan 2012
TL;DR: An Astronomically Tuned Neogene Time Scale (ATNTS2012) is presented in this article, as an update of ATNTS2004 in GTS2004, and the numerical ages are identical or almost so.
Abstract: An Astronomically Tuned Neogene Time Scale (ATNTS2012) is presented, as an update of ATNTS2004 in GTS2004. The new scale is not fundamentally different from its predecessor and the numerical ages are identical or almost so. Astronomical tuning has in principle the potential of generating a stable Neogene time scale as a function of the accuracy of the La2004 astronomical solution used for both scales. Minor problems remain in the tuning of the Lower Miocene. In GTS2012 we will summarize what has been modified or added since the publication of ATNTS2004 for incorporation in its successor, ATNTS2012. Mammal biostratigraphy and its chronology are elaborated, and the regional Neogene stages of the Paratethys and New Zealand are briefy discussed. To keep changes to ATNTS2004 transparent we maintain its subdivision into headings as much as possible.

1,479 citations