scispace - formally typeset
Search or ask a question

Showing papers by "Gert Pfurtscheller published in 2018"


Journal ArticleDOI
TL;DR: Connectivity patterns of neural and vascular 0.1‐Hz BOLD oscillations were compared and suggested that two strategies may exist to optimize regulation of anxiety, that is increased functional connectivity between amygdala and medial frontal cortex, and increased cerebral blood flow in amygdala and related structures.
Abstract: Low-frequency oscillations with a dominant frequency at 0.1 Hz are one of the most influential intrinsic blood-oxygen-level-dependent (BOLD) signals. This raises the question if vascular BOLD oscillations (originating from blood flow in the brain) and intrinsic slow neural activity fluctuations (neural BOLD oscillations) can be differentiated. In this study, we report on two different approaches: first, on computing the phase-locking value in the frequency band 0.07-0.13 Hz between heart beat-to-beat interval (RRI) and BOLD oscillations and second, between multiple BOLD oscillations (functional connectivity) in four resting states in 23 scanner-naive, anxious healthy subjects. The first method revealed that vascular 0.1-Hz BOLD oscillations preceded those in RRI signals by 1.7 ± 0.6 s and neural BOLD oscillations lagged RRI oscillations by 0.8 ± 0.5 s. Together, vascular BOLD oscillations preceded neural BOLD oscillations by ~90° or ~2.5 s. To verify this discrimination, connectivity patterns of neural and vascular 0.1-Hz BOLD oscillations were compared in 26 regions involved in processing of emotions. Neural BOLD oscillations revealed significant phase-coupling between amygdala and medial frontal cortex, while vascular BOLD oscillations showed highly significant phase-coupling between amygdala and multiple regions in the supply areas of the anterior and medial cerebral arteries. This suggests that not only slow neural and vascular BOLD oscillations can be dissociated but also that two strategies may exist to optimize regulation of anxiety, that is increased functional connectivity between amygdala and medial frontal cortex, and increased cerebral blood flow in amygdala and related structures.

21 citations


Journal ArticleDOI
TL;DR: A group of 23 healthy scanner naïve participants of a functional magnetic resonance imaging study with increased state anxiety exhibited 0.1 Hz oscillations in blood-oxygenation-level-dependent (BOLD) signals, heart rate (HR) beat-to-beat intervals (RRI) and respiration and their phase-coupling pattern is quite contrary to typical respiratory sinus arrhythmia.
Abstract: A group of 23 healthy scanner naive participants of a functional magnetic resonance imaging (fMRI) study with increased state anxiety exhibited 0.1 Hz oscillations in blood-oxygenation-level-dependent (BOLD) signals, heart rate (HR) beat-to-beat intervals (RRI) and respiration. The goal of the present paper is to explore slow oscillations in respiration and RRI and their phase-coupling by applying the dynamic "wave-by-wave" analysis. Five participants with either high or moderate levels of fMRI-related anxiety (age 23.8 ± 3.3y) were found with at least one bulk of consecutive breathing waves with a respiration rate between 6 to 9 breaths/min in a 5-min resting state. The following results were obtained: (i) Breathing oscillations with dominant frequencies at 0.1 Hz and 0.15 Hz displayed a 1:1 coupling with RRI. (ii) Inspiration time was significantly longer than expiration time. (iii) RRI minima (start of HR decrease) coincided with the early inspiration, and RRI maxima (start of HR increase) coincided with the late inspiration. (iv) RRI rhythm led over the respiratory rhythm. This phase-coupling pattern is quite contrary to typical respiratory sinus arrhythmia where HR increases during inspiration and decreases during expiration.

17 citations


Journal ArticleDOI
26 Nov 2018-PLOS ONE
TL;DR: Different mechanisms related to anxiety processing in healthy individuals are suggested, one of which could embrace an increase of blood circulation in the territory of the left middle cerebral artery and another which translates to rhythmic central commands in the frequency band 0.1–0.14 Hz.
Abstract: Participation in magnetic resonance imaging (MRI) scanning is associated with increased anxiety, thus possibly impacting baseline recording for functional MRI studies. The goal of the paper is to elucidate the significant hemispheric asymmetry between blood-oxygenation-level-dependent (BOLD) signals from precentral gyrus (PCG) and insula in 23 healthy individuals without any former MRI experience recently published in a PLOSONE paper. In addition to BOLD signals state anxiety and heart rate variability (HRV) were analyzed in two resting state sessions (R1, R2). Phase-locking and time delays from BOLD signals were computed in the frequency band 0.07–0.13 Hz. Positive (pTD) and negative time delays (nTD) were found. The pTD characterize descending neural BOLD oscillations spreading from PCG to insula and nTD characterize ascending vascular BOLD oscillations related to blood flow in the middle cerebral artery. HRV power in two low frequency bands 0.06–0.1 Hz and 0.1–0.14 Hz was computed. Based on the anxiety change from R1 to R2, two groups were separated: one with a strong anxiety decline (large change group) and one with a moderate decline or even anxiety increase (small change group). A significant correlation was found only between the left-hemispheric time delay (pTD, nTD) and anxiety change, with a dominance of nTD in the large change group. The analysis of within-scanner HRV revealed a pronounced increase of low frequency power between both resting states, dominant in the band 0.06–0.1 Hz in the large change group and in the band 0.1–0.14 Hz in the small change group. These results suggest different mechanisms related to anxiety processing in healthy individuals. One mechanism (large anxiety change) could embrace an increase of blood circulation in the territory of the left middle cerebral artery (vascular BOLD) and another (small anxiety change) translates to rhythmic central commands (neural BOLD) in the frequency band 0.1–0.14 Hz.

8 citations


Journal ArticleDOI
TL;DR: It is proposed that the observed change in LF preceding HFS by some seconds could constitute an induction signal for HFS, suggesting the involvement of pathways of the autonomic nervous system that might contribute to HFS.

3 citations


Posted ContentDOI
29 Jun 2018-PLOS ONE
TL;DR: Different mechanisms related to anxiety processing in healthy individuals are suggested, including an increase of blood circulation in the territory of the left middle cerebral artery and another that translates to rhythmic central commands in the frequency band 0.1–0.14 Hz.

1 citations


Posted ContentDOI
29 Jun 2018-bioRxiv
TL;DR: In this paper, the authors investigated the relation between anxiety, 0.1-Hz BOLD oscillations and heart rate variability (HRV) in two separate resting state sessions (R1, R2).
Abstract: Participation in a MRI scan is associated with increased anxiety, thus possibly impacting baseline recording for functional MRI studies. We investigated in 23 healthy individuals without any former MRI experience (scanner-naive) the relations between anxiety, 0.1-Hz BOLD oscillations and heart rate variability (HRV) in two separate resting state sessions (R1, R2). BOLD signals were recorded from precentral gyrus (PCG) and insula in both hemispheres. Phase-locking and time delays were computed in the frequency band 0.07-0.13 Hz. Positive (pTD) and negative time delays (nTD) were found. The pTD characterize descending neural BOLD oscillations spreading from PCG to insula and nTD characterize ascending vascular BOLD oscillations related to blood flow in the middle cerebral artery. HRV power in two low frequency bands 0.06-0.1 Hz and 0.1-0.14 Hz was computed. Based on the drop rate of the anxiety level from R1 to R2, two groups could be identified: one with a strong anxiety decline (large drop group) and one with a moderate decline or even anxiety increase (small drop group). A significant correlation was found only between the left-hemispheric time delay (pTD, nTD) of BOLD oscillations and anxiety drop, with a dominance of nTD in the large drop group. The analysis of within-scanner HRV revealed a pronounced increase of low frequency power between both resting states, dominant in the band 0.06-0.1 Hz in the large drop group and in the band 0.1-0.14 Hz in the small drop group. These results suggest different mechanisms related to anxiety processing in healthy individuals. One mechanism (large drop group) could embrace an increase of blood circulation in the territory of the left middle cerebral artery (vascular BOLD) and another (small drop group) translates to rhythmic central commands (neural BOLD) in the frequency band 0.1-0.14 Hz.

1 citations