scispace - formally typeset
Search or ask a question
Author

Gexiang Zhang

Bio: Gexiang Zhang is an academic researcher from Chengdu University of Information Technology. The author has contributed to research in topics: Membrane computing & Evolutionary algorithm. The author has an hindex of 31, co-authored 182 publications receiving 3546 citations. Previous affiliations of Gexiang Zhang include Chengdu University of Technology & Northern General Hospital.


Papers
More filters
Journal ArticleDOI
TL;DR: An extended spiking neural P system (ESNPS) has been proposed by introducing the probabilistic selection of evolution rules and multi-neurons output and a family of ESNPS, called optimization spiking Neural P system, are further designed through introducing a guider to adaptively adjust rule probabilities to approximately solve combinatorial optimization problems.
Abstract: Membrane systems (also called P systems) refer to the computing models abstracted from the structure and the functioning of the living cell as well as from the cooperation of cells in tissues, organs, and other populations of cells. Spiking neural P systems (SNPS) are a class of distributed and parallel computing models that incorporate the idea of spiking neurons into P systems. To attain the solution of optimization problems, P systems are used to properly organize evolutionary operators of heuristic approaches, which are named as membrane-inspired evolutionary algorithms (MIEAs). This paper proposes a novel way to design a P system for directly obtaining the approximate solutions of combinatorial optimization problems without the aid of evolutionary operators like in the case of MIEAs. To this aim, an extended spiking neural P system (ESNPS) has been proposed by introducing the probabilistic selection of evolution rules and multi-neurons output and a family of ESNPS, called optimization spiking neural P system (OSNPS), are further designed through introducing a guider to adaptively adjust rule probabilities to approximately solve combinatorial optimization problems. Extensive experiments on knapsack problems have been reported to experimentally prove the viability and effectiveness of the proposed neural system.

284 citations

Journal ArticleDOI
TL;DR: A unified framework and a comprehensive survey of recent work in quantum-inspired evolutionary algorithms is provided and conclusions are drawn about some of the most promising future research developments in this rapidly growing field.
Abstract: Quantum-inspired evolutionary algorithms, one of the three main research areas related to the complex interaction between quantum computing and evolutionary algorithms, are receiving renewed attention. A quantum-inspired evolutionary algorithm is a new evolutionary algorithm for a classical computer rather than for quantum mechanical hardware. This paper provides a unified framework and a comprehensive survey of recent work in this rapidly growing field. After introducing of the main concepts behind quantum-inspired evolutionary algorithms, we present the key ideas related to the multitude of quantum-inspired evolutionary algorithms, sketch the differences between them, survey theoretical developments and applications that range from combinatorial optimizations to numerical optimizations, and compare the advantages and limitations of these various methods. Finally, a small comparative study is conducted to evaluate the performances of different types of quantum-inspired evolutionary algorithms and conclusions are drawn about some of the most promising future research developments in this area.

225 citations

Journal ArticleDOI
TL;DR: The results of case studies show that FDSNP is effective in diagnosing faults in power transmission networks for single and multiple fault situations with/without incomplete and uncertain SCADA data, and is superior to four methods reported in the literature in terms of the correctness of diagnosis results.
Abstract: This paper proposes a graphic modeling approach, fault diagnosis method based on fuzzy reasoning spiking neural P systems (FDSNP), for power transmission networks. In FDSNP, fuzzy reasoning spiking neural P systems (FRSN P systems) with trapezoidal fuzzy numbers are used to model candidate faulty sections and an algebraic fuzzy reasoning algorithm is introduced to obtain confidence levels of candidate faulty sections, so as to identify faulty sections. FDSNP offers an intuitive illustration based on a strictly mathematical expression, a good fault-tolerant capacity due to its handling of incomplete and uncertain messages in a parallel manner, a good description for the relationships between protective devices and faults, and an understandable diagnosis model-building process. To test the validity and feasibility of FDSNP, seven cases of a local subsystem in an electrical power system are used. The results of case studies show that FDSNP is effective in diagnosing faults in power transmission networks for single and multiple fault situations with/without incomplete and uncertain SCADA data, and is superior to four methods, reported in the literature, in terms of the correctness of diagnosis results.

204 citations

Journal ArticleDOI
TL;DR: The approximate dc model is extended to a more general linear model that can handle both supervisory control and data acquisition and phasor measurement unit measurements and a general FDIA based on this model is derived and the error tolerance of such attacks is discussed.
Abstract: Successful detection of false data injection attacks (FDIAs) is essential for ensuring secure power grids operation and control. First, this paper extends the approximate dc model to a more general linear model that can handle both supervisory control and data acquisition and phasor measurement unit measurements. Then, a general FDIA based on this model is derived and the error tolerance of such attacks is discussed. To detect such attacks, a method based on short-term state forecasting considering temporal correlation is proposed. Furthermore, a statistics-based measurement consistency test method is presented to check the consistency between the forecasted measurements and the received measurements. This measurement consistency test is further integrated with ${\infty }$ -norm and ${L}_{{2}}$ -norm-based measurement residual analysis to construct the proposed detection metric. The proposed detector addresses the shortcoming of previous detectors in terms of handling critical measurements. Besides, the removal problem of attacked measurements, which may cause the system to become unobservable, is addressed effectively by the proposed method through forecasted measurements. Numerical tests on IEEE 14-bus and 118-bus test systems verify the effectiveness and performance of the proposed method.

172 citations

Journal ArticleDOI
TL;DR: An adaptive weight assignment function to dynamically adjust the measurement weight based on the distance of big unwanted disturbances from the PMU measurements is proposed to increase algorithm robustness and a statistical test-based interpolation matrix H updating judgment strategy is proposed.
Abstract: Accurate real-time states provided by the state estimator are critical for power system reliable operation and control. This paper proposes a novel phasor measurement unit (PMU)-based robust state estimation method (PRSEM) to real-time monitor a power system under different operation conditions. To be specific, an adaptive weight assignment function to dynamically adjust the measurement weight based on the distance of big unwanted disturbances from the PMU measurements is proposed to increase algorithm robustness. Furthermore, a statistical test-based interpolation matrix ${H}$ updating judgment strategy is proposed. The processed and resynced PMU information are used as priori information and incorporated to the modified weighted least square estimation to address the measurements imperfect synchronization between supervisory control and data acquisition and PMU measurements. Finally, the innovation analysis-based bad data (BD) detection method, which can handle the smearing effect and critical measurement errors, is presented. We evaluate PRSEM by using IEEE benchmark test systems and a realistic utility system. The numerical results indicate that, in short computation time, PRSEM can effectively track the system real-time states with good robustness and can address several kinds of BD.

169 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Abstract: Machine Learning is the study of methods for programming computers to learn. Computers are applied to a wide range of tasks, and for most of these it is relatively easy for programmers to design and implement the necessary software. However, there are many tasks for which this is difficult or impossible. These can be divided into four general categories. First, there are problems for which there exist no human experts. For example, in modern automated manufacturing facilities, there is a need to predict machine failures before they occur by analyzing sensor readings. Because the machines are new, there are no human experts who can be interviewed by a programmer to provide the knowledge necessary to build a computer system. A machine learning system can study recorded data and subsequent machine failures and learn prediction rules. Second, there are problems where human experts exist, but where they are unable to explain their expertise. This is the case in many perceptual tasks, such as speech recognition, hand-writing recognition, and natural language understanding. Virtually all humans exhibit expert-level abilities on these tasks, but none of them can describe the detailed steps that they follow as they perform them. Fortunately, humans can provide machines with examples of the inputs and correct outputs for these tasks, so machine learning algorithms can learn to map the inputs to the outputs. Third, there are problems where phenomena are changing rapidly. In finance, for example, people would like to predict the future behavior of the stock market, of consumer purchases, or of exchange rates. These behaviors change frequently, so that even if a programmer could construct a good predictive computer program, it would need to be rewritten frequently. A learning program can relieve the programmer of this burden by constantly modifying and tuning a set of learned prediction rules. Fourth, there are applications that need to be customized for each computer user separately. Consider, for example, a program to filter unwanted electronic mail messages. Different users will need different filters. It is unreasonable to expect each user to program his or her own rules, and it is infeasible to provide every user with a software engineer to keep the rules up-to-date. A machine learning system can learn which mail messages the user rejects and maintain the filtering rules automatically. Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis. Statistics focuses on understanding the phenomena that have generated the data, often with the goal of testing different hypotheses about those phenomena. Data mining seeks to find patterns in the data that are understandable by people. Psychological studies of human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people (concept learning, skill acquisition, strategy change, etc.).

13,246 citations

Book ChapterDOI
01 Jan 1994
TL;DR: In this Chapter, a decision maker (or a group of experts) trying to establish or examine fair procedures to combine opinions about alternatives related to different points of view is imagined.
Abstract: In this Chapter, we imagine a decision maker (or a group of experts) trying to establish or examine fair procedures to combine opinions about alternatives related to different points of view.

1,329 citations

Journal ArticleDOI
TL;DR: It is found that it is a high time to provide a critical review of the latest literatures published and also to point out some important future avenues of research on DE.
Abstract: Differential Evolution (DE) is arguably one of the most powerful and versatile evolutionary optimizers for the continuous parameter spaces in recent times. Almost 5 years have passed since the first comprehensive survey article was published on DE by Das and Suganthan in 2011. Several developments have been reported on various aspects of the algorithm in these 5 years and the research on and with DE have now reached an impressive state. Considering the huge progress of research with DE and its applications in diverse domains of science and technology, we find that it is a high time to provide a critical review of the latest literatures published and also to point out some important future avenues of research. The purpose of this paper is to summarize and organize the information on these current developments on DE. Beginning with a comprehensive foundation of the basic DE family of algorithms, we proceed through the recent proposals on parameter adaptation of DE, DE-based single-objective global optimizers, DE adopted for various optimization scenarios including constrained, large-scale, multi-objective, multi-modal and dynamic optimization, hybridization of DE with other optimizers, and also the multi-faceted literature on applications of DE. The paper also presents a dozen of interesting open problems and future research issues on DE.

1,265 citations

Journal ArticleDOI
TL;DR: In the proposed algorithm, a scalarization approach, termed angle-penalized distance, is adopted to balance convergence and diversity of the solutions in the high-dimensional objective space, and reference vectors are effective and cost-efficient for preference articulation, which is particularly desirable for many-objective optimization.
Abstract: In evolutionary multiobjective optimization, maintaining a good balance between convergence and diversity is particularly crucial to the performance of the evolutionary algorithms (EAs). In addition, it becomes increasingly important to incorporate user preferences because it will be less likely to achieve a representative subset of the Pareto-optimal solutions using a limited population size as the number of objectives increases. This paper proposes a reference vector-guided EA for many-objective optimization. The reference vectors can be used not only to decompose the original multiobjective optimization problem into a number of single-objective subproblems, but also to elucidate user preferences to target a preferred subset of the whole Pareto front (PF). In the proposed algorithm, a scalarization approach, termed angle-penalized distance, is adopted to balance convergence and diversity of the solutions in the high-dimensional objective space. An adaptation strategy is proposed to dynamically adjust the distribution of the reference vectors according to the scales of the objective functions. Our experimental results on a variety of benchmark test problems show that the proposed algorithm is highly competitive in comparison with five state-of-the-art EAs for many-objective optimization. In addition, we show that reference vectors are effective and cost-efficient for preference articulation, which is particularly desirable for many-objective optimization. Furthermore, a reference vector regeneration strategy is proposed for handling irregular PFs. Finally, the proposed algorithm is extended for solving constrained many-objective optimization problems.

1,020 citations

Journal ArticleDOI
TL;DR: PlatEMO as discussed by the authors is a MATLAB platform for evolutionary multi-objective optimization, which includes more than 50 multiobjective evolutionary algorithms and more than 100 multobjective test problems, along with several widely used performance indicators.
Abstract: Over the last three decades, a large number of evolutionary algorithms have been developed for solving multi-objective optimization problems. However, there lacks an upto-date and comprehensive software platform for researchers to properly benchmark existing algorithms and for practitioners to apply selected algorithms to solve their real-world problems. The demand of such a common tool becomes even more urgent, when the source code of many proposed algorithms has not been made publicly available. To address these issues, we have developed a MATLAB platform for evolutionary multi-objective optimization in this paper, called PlatEMO, which includes more than 50 multiobjective evolutionary algorithms and more than 100 multi-objective test problems, along with several widely used performance indicators. With a user-friendly graphical user interface, PlatEMO enables users to easily compare several evolutionary algorithms at one time and collect statistical results in Excel or LaTeX files. More importantly, PlatEMO is completely open source, such that users are able to develop new algorithms on the basis of it. This paper introduces the main features of PlatEMO and illustrates how to use it for performing comparative experiments, embedding new algorithms, creating new test problems, and developing performance indicators. Source code of PlatEMO is now available at: http://bimk.ahu.edu.cn/index.php?s=/Index/Software/index.html.

915 citations