scispace - formally typeset
Search or ask a question
Author

Gezahegn Yirgu

Bio: Gezahegn Yirgu is an academic researcher from Addis Ababa University. The author has contributed to research in topics: Rift & Volcano. The author has an hindex of 35, co-authored 75 publications receiving 5428 citations.
Topics: Rift, Volcano, Basalt, Magma, East African Rift


Papers
More filters
Journal ArticleDOI
23 Oct 1997-Nature
TL;DR: In this paper, geochronological (40Ar/39Ar) and magnetostratigraphic results for the Ethiopian traps, one of the last remaining flood basalts for which few such data were available, were presented.
Abstract: Continental flood basalts are often considered as fossil evidence of mantle plume heads impinging on the lithosphere1,2 and have been related to continental breakup3,4,5. Many of these flood basalts erupted within a short time span—of the order of 1 Myr—and were apparently synchronous with crises in global climate and with mass extinctions6. Here we present geochronological (40Ar/39Ar) and magnetostratigraphic results for the Ethiopian traps, one of the last remaining flood basalts for which few such data were available. The bulk of the traps, which have been inferred to mark the appearance of the Ethiopian-Afar plume head at the Earth's surface, erupted approximately 30 Myr ago, over a period of 1 Myr or less. This was about the time of a change to a colder and drier global climate, a major continental ice-sheet advance in Antarctica, the largest Tertiary sea-level drop and significant extinctions.

641 citations

Journal ArticleDOI
20 Jul 2006-Nature
TL;DR: A three-dimensional deformation field for the Dabbahu rifting episode derived from satellite radar data shows that the entire segment ruptured, making it the largest to have occurred on land in the era of satellite geodesy.
Abstract: Occurring mainly over a week in September 2005, a 60-km-long section of the Afar depression in Ethiopia was torn apart by the injection of over 2 cubic kilometres of molten rock into the plate: an 8-metre-wide gap appeared at the surface. Satellite radar imagery reveals that a series of fissures opened, the rift shoulders rose, and the ground surface dropped above the molten rock. A similarly large rift took place in Krafla in Iceland 25 years ago, but in a series of events over a ten year period. The Afar incident suggests that magma intrusion into a dyke, rather than faulting of the crust, may be responsible for the segmentation of continental rifts. Seafloor spreading centres show a regular along-axis segmentation thought to be produced by a segmented magma supply in the passively upwelling mantle1,2. On the other hand, continental rifts are segmented by large offset normal faults, and many lack magmatism. It is unclear how, when and where the ubiquitous segmented melt zones are emplaced during the continental rupture process. Between 14 September and 4 October 2005, 163 earthquakes (magnitudes greater than 3.9) and a volcanic eruption occurred within the ∼60-km-long Dabbahu magmatic segment of the Afar rift, a nascent seafloor spreading centre in stretched continental lithosphere3,4. Here we present a three-dimensional deformation field for the Dabbahu rifting episode derived from satellite radar data, which shows that the entire segment ruptured, making it the largest to have occurred on land in the era of satellite geodesy. Simple elastic modelling shows that the magmatic segment opened by up to 8 m, yet seismic rupture can account for only 8 per cent of the observed deformation. Magma was injected along a dyke between depths of 2 and 9 km, corresponding to a total intrusion volume of ∼2.5 km3. Much of the magma appears to have originated from shallow chambers beneath Dabbahu and Gabho volcanoes at the northern end of the segment, where an explosive fissural eruption occurred on 26 September 2005. Although comparable in magnitude to the ten year (1975–84) Krafla events in Iceland5, seismic data suggest that most of the Dabbahu dyke intrusion occurred in less than a week. Thus, magma intrusion via dyking, rather than segmented normal faulting, maintains and probably initiated the along-axis segmentation along this sector of the Nubia–Arabia plate boundary.

522 citations

Journal ArticleDOI
TL;DR: Petrological and geochemical data are reported for basalts and silicic peralkaline rocks from the Quaternary Gedemsa volcano, northern Ethiopian rift, with the aim of discussing the petrogenesis of peralkal magmas and the significance of the Daly Gap occurring at local and regional scales as mentioned in this paper.
Abstract: Petrological and geochemical data are reported for basalts and silicic peralkaline rocks from the Quaternary Gedemsa volcano, northern Ethiopian rift, with the aim of discussing the petrogenesis of peralkaline magmas and the significance of the Daly Gap occurring at local and regional scales. Incompatible element vs incompatible element diagrams display smooth positive trends; the isotope ratios of the silicic rocks (Sr/Sr ˆ 0 70406---0 70719; Nd/Nd ˆ 0 51274---0 51279) encompass those of the mafic rocks. These data suggest a genetic link between rhyolites and basalts, but are not definitive in establishing whether silicic rocks are related to basalts through fractional crystallization or partial melting. Geochemical modelling of incompatible vs compatible elements excludes the possibility that peralkaline rhyolites are generated by melting of basaltic rocks, and indicates a derivation by fractional crystallization plus moderate assimilation of wall rocks (AFC) starting from trachytes; the latter have exceedingly low contents of compatible elements, which precludes a derivation by basalt melting. Continuous AFC from basalt to rhyolite, with small rates of crustal assimilation, best explains the geochemical data. This process generated a zoned magma chamber whose silicic upper part acted as a density filter for mafic magmas and was preferentially tapped; mafic magmas, ponding at the bottom, were erupted only during post-caldera stages, intensively mingled with silicic melts. The large number of caldera depressions found in the northern Ethiopian rift and their coincidence with zones of positive gravity anomalies suggest the occurrence of numerous magma chambers where evolutionary processes generated silicic peralkaline melts starting from mafic parental magmas. This suggests that the petrological and volcanological model proposed for Gedemsa may have regional significance, thus furnishing an explanation for the large-volume peralkaline ignimbrites in the Ethiopian rift.

393 citations

Journal ArticleDOI
TL;DR: In this paper, the authors determined the timing and kinematics of rifting in the 3rd arm, the Main Ethiopian rift (MER), near its intersection with the southern Red Sea rift.

389 citations

Journal ArticleDOI
TL;DR: The Ethiopian plateau is made up of several distinct volcanic centres of different ages and magmatic affinities as discussed by the authors, and the three main types of magma have very different major and trace element characteristics ranging from compositions low in incompatible elements in the tholeiites [e.g. 10 ppm La at 7 wt % MgO (=La7), La/εb = 4.2], moderate in the alkali basalts (La7 = 24, La/β = 9.2), and very high in the magnesian alkaline magmas (
Abstract: The Ethiopian plateau is made up of several distinct volcanic centres of different ages and magmatic affinities. In the NE, a thick sequence of 30 Ma flood basalts is overlain by the 30 Ma Simien shield volcano. The flood basalts and most of this shield volcano, except for a thin veneer of alkali basalt, are tholeiitic. In the centre of the province, a far thinner sequence of flood basalt is overlain by the 22 Ma Choke and Guguflu shield volcanoes. Like the underlying flood basalts, these shields are composed of alkaline lavas. A third type of magma, which also erupted at 30 Ma, is more magnesian, alkaline and strongly enriched in incompatible trace elements. Eruption of this magma was confined to the NE of the province, a region where the lava flows are steeply tilted as a result of deformation contemporaneous with their emplacement. Younger shields (e.g. Mt Guna, 10·7 Ma) are composed of Si-undersaturated lavas. The three main types of magma have very different major and trace element characteristics ranging from compositions low in incompatible elements in the tholeiites [e.g. 10 ppm La at 7 wt % MgO (=La7), La/Υb = 4.2], moderate in the alkali basalts (La7 = 24, La/Υb = 9.2), and very high in the magnesian alkaline magmas (La7 = 43, La/Υb = 17). Although their Nd and Sr isotope compositions are similar, Pb isotopic compositions vary considerably; 206Pb/204Pb varies in the range of ∼17·9-18·6 in the tholeiites and ∼19·0-19·6 in the 22 Ma shields. A conventional model of melting in a mantle plume, or series of plumes, cannot explain the synchronous eruption of incompatible-element-poor tholeiites and incompatible-element-rich alkali lavas, the large range of Pb isotope compositions and the broad transition from tholeiitic to alkali magmatism during a period of continental rifting. The lithospheric mantle played only a passive role in the volcanism and does not represent a major source of magma. The mantle source of the Ethiopian volcanism can be compared with the broad region of mantle upwelling in the South Pacific that gave rise to the volcanic islands of French Polynesia. Melting in large hotter-than-average parts of the Ethiopian superswell produced the flood basalts; melting in small compositionally distinct regions produced the magmas that fed the shield volcanoes. © Oxford University Press 2004; all rights reserved.

380 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The assembly of the eastern part of Gondwana (eastern Africa, Arabian-Nubian shield (ANS), Seychelles, India, Madagascar, Sri Lanka, East Antarctica and Australia) resulted from a complex series of orogenic events spanning the interval from ∼750 to ∼530 Ma as mentioned in this paper.

948 citations

Journal ArticleDOI
TL;DR: A number of tectonic events occurred contemporaneously in the Mediterranean region and the Middle East 30-25 Myr ago as discussed by the authors, which are contemporaneous to or immediately followed a strong reduction of the northward absolute motion of Africa.
Abstract: A number of tectonic events occurred contemporaneously in the Mediterranean region and the Middle East 30–25 Myr ago. These events are contemporaneous to or immediately followed a strong reduction of the northward absolute motion of Africa. Geological observations in the Neogene extensional basins of the Mediterranean region reveal that extension started synchronously from west to east 30–25 Myr ago. In the western Mediterranean it started in the Gulf of Lion, Valencia trough, and Alboran Sea as well as between the Maures massif and Corsica between 33 and 27 Ma ago. It then propagated eastward and southward to form to Liguro-Provencal basin and the Tyrrhenian Sea. In the eastern Mediterranean, extension started in the Aegean Sea before the deposition of marine sediments onto the collapsed Hellenides in the Aquitanian and before the cooling of high-temperature metamorphic core complexes between 20 and 25 Ma. Foundering of the inner zones of the Carpathians and extension in the Panonnian basin also started in the late Oligocene-early Miocene. The body of the Afro-Arabian plate first collided with Eurasia in the eastern Mediterranean region progressively from the Eocene to the Oligocene. Extensional tectonics was first recorded in the Gulf of Aden, Afar triple junction, and Red Sea region also in the Oligocene. A general magmatic surge occurred above all African hot spots, especially the Afar one. We explore the possibility that these drastic changes in the stress regime of the Mediterranean region and Middle East and the contemporaneous volcanic event were triggerred by the Africa/Arabia-Eurasia collision, which slowed down the motion of Africa. The present-day Mediterranean Sea was then locked between two collision zones, and the velocity of retreat of the African slab increased and became larger than the velocity of convergence leading to backarc extension. East of the Caucasus and northern Zagros collision zone the Afro-Arabian plate was still pulled by the slab pull force in the Zagros subduction zone, which created extensional stresses in the northeast corner of the Afro-Arabian plate. The Arabian plate was formed by propagation of a crack from the Carlsberg ridge westward toward the weak part of the African lithosphere above the Afar plume.

925 citations

Journal ArticleDOI
03 Dec 1999-Science
TL;DR: A model of three-dimensional shear wave velocity variations in the mantle reveals a tilted low velocity anomaly extending from the core-mantle boundary region beneath the southeastern Atlantic Ocean into the upper mantle beneath eastern Africa, suggesting that Cenozoic flood basalt volcanism in the Afar region and active rifting beneath the East African Rift is linked to an extensive thermal anomaly at the CMB.
Abstract: A model of three-dimensional shear wave velocity variations in the mantle reveals a tilted low velocity anomaly extending from the core-mantle boundary (CMB) region beneath the southeastern Atlantic Ocean into the upper mantle beneath eastern Africa. This anomaly suggests that Cenozoic flood basalt volcanism in the Afar region and active rifting beneath the East African Rift is linked to an extensive thermal anomaly at the CMB more than 45 degrees away. In contrast, a low velocity anomaly beneath Iceland is confined to the upper mantle.

880 citations

Journal ArticleDOI
TL;DR: In this paper, the authors summarize the evolution of the greater Red Sea-Gulf of Aden rift system, which includes the Gulfs of Suez and Aqaba, the Red Sea and Gulf of Aden marine basins and their continental margins, and the Afar region.

774 citations

Journal ArticleDOI
22 Oct 1998-Nature
TL;DR: In this article, a model of a single large plume impinging beneath the Ethiopian plateau is presented, which takes into account lateral flow and ponding of plume material in pre-existing zones of lithospheric thinning.
Abstract: The geology of northern and central Africa is characterized by broad plateaux, narrower swells and volcanism occurring from ∼45 Myr ago to the present. The greatest magma volumes occur on the >1,000-km-wide Ethiopian and east African plateaux, which are transected by the Red Sea, Gulf of Aden and east African rift systems, active since the late Oligocene epoch. Evidence for one or more mantle plumes having impinged beneath the plateaux comes from the dynamic compensation inferred from gravity studies, the generally small degrees of extension observed and the geochemistry of voluminous eruptive products1,2,3,4. Here we present a model of a single large plume impinging beneath the Ethiopian plateau that takes into account lateral flow and ponding of plume material in pre-existing zones of lithospheric thinning5. We show that this single plume can explain the distribution and timing of magmatism and uplift throughout east Africa. The thin lithosphere beneath the Mesozoic–Palaeogene rifts and passive margins of Africa and Arabia guides the lateral flow of plume material west to the Cameroon volcanic line and south to the Comoros Islands. Our results demonstrate the strong control that the lithosphere exerts on the spatial distribution of plume-related melting and magmatism.

763 citations