scispace - formally typeset
Search or ask a question
Author

Gi-Ho Sung

Bio: Gi-Ho Sung is an academic researcher from Kwandong University. The author has contributed to research in topics: Cordyceps & Cordyceps militaris. The author has an hindex of 36, co-authored 168 publications receiving 12702 citations. Previous affiliations of Gi-Ho Sung include St Mary's Hospital & Rural Development Administration.


Papers
More filters
Journal ArticleDOI
TL;DR: Among the regions of the ribosomal cistron, the internal transcribed spacer (ITS) region has the highest probability of successful identification for the broadest range of fungi, with the most clearly defined barcode gap between inter- and intraspecific variation.
Abstract: Six DNA regions were evaluated as potential DNA barcodes for Fungi, the second largest kingdom of eukaryotic life, by a multinational, multilaboratory consortium. The region of the mitochondrial cytochrome c oxidase subunit 1 used as the animal barcode was excluded as a potential marker, because it is difficult to amplify in fungi, often includes large introns, and can be insufficiently variable. Three subunits from the nuclear ribosomal RNA cistron were compared together with regions of three representative protein-coding genes (largest subunit of RNA polymerase II, second largest subunit of RNA polymerase II, and minichromosome maintenance protein). Although the protein-coding gene regions often had a higher percent of correct identification compared with ribosomal markers, low PCR amplification and sequencing success eliminated them as candidates for a universal fungal barcode. Among the regions of the ribosomal cistron, the internal transcribed spacer (ITS) region has the highest probability of successful identification for the broadest range of fungi, with the most clearly defined barcode gap between inter- and intraspecific variation. The nuclear ribosomal large subunit, a popular phylogenetic marker in certain groups, had superior species resolution in some taxonomic groups, such as the early diverging lineages and the ascomycete yeasts, but was otherwise slightly inferior to the ITS. The nuclear ribosomal small subunit has poor species-level resolution in fungi. ITS will be formally proposed for adoption as the primary fungal barcode marker to the Consortium for the Barcode of Life, with the possibility that supplementary barcodes may be developed for particular narrowly circumscribed taxonomic groups.

4,116 citations

Journal ArticleDOI
19 Oct 2006-Nature
TL;DR: It is indicated that there may have been at least four independent losses of the flagellum in the kingdom Fungi, and the enigmatic microsporidia seem to be derived from an endoparasitic chytrid ancestor similar to Rozella allomycis, on the earliest diverging branch of the fungal phylogenetic tree.
Abstract: The ancestors of fungi are believed to be simple aquatic forms with flagellated spores, similar to members of the extant phylum Chytridiomycota (chytrids). Current classifications assume that chytrids form an early-diverging clade within the kingdom Fungi and imply a single loss of the spore flagellum, leading to the diversification of terrestrial fungi. Here we develop phylogenetic hypotheses for Fungi using data from six gene regions and nearly 200 species. Our results indicate that there may have been at least four independent losses of the flagellum in the kingdom Fungi. These losses of swimming spores coincided with the evolution of new mechanisms of spore dispersal, such as aerial dispersal in mycelial groups and polar tube eversion in the microsporidia (unicellular forms that lack mitochondria). The enigmatic microsporidia seem to be derived from an endoparasitic chytrid ancestor similar to Rozella allomycis, on the earliest diverging branch of the fungal phylogenetic tree.

1,682 citations

Journal ArticleDOI
TL;DR: Most diagnostic characters used in current classifications of Cordyceps were not supported as being phylogenetically informative; the characters that were most consistent with the phylogeny were texture, pigmentation and morphology of stromata.

828 citations

Journal ArticleDOI
TL;DR: This study provides a phylogenetic synthesis for the Fungi and a framework for future phylogenetic studies on fungi and the impact of this newly discovered phylogenetic structure on supraordinal classifications is discussed.
Abstract: Based on an overview of progress in molecular systematics of the true fungi (Fungi/Eumycota) since 1990, little overlap was found among single-locus data matrices, which explains why no large-scale multilocus phylogenetic analysis had been undertaken to reveal deep relationships among fungi. As part of the project ‘‘Assembling the Fungal Tree of Life’’ (AFTOL), results of four Bayesian analyses are reported with complementary bootstrap assessment of phylogenetic confidence based on (1) a combined two-locus data set (nucSSU and nucLSU rDNA) with 558 species representing all traditionally recognized fungal phyla (Ascomycota, Basidiomycota, Chytridiomycota, Zygomycota) and the Glomeromycota, (2) a combined three-locus data set (nucSSU, nucLSU, and mitSSU rDNA) with 236 species, (3) a combined three-locus data set (nucSSU, nucLSU rDNA, and RPB2) with 157 species, and (4) a combined four-locus data set (nucSSU, nucLSU, mitSSU rDNA, and RPB2) with 103 species. Because of the lack of complementarity among single-locus data sets, the last three analyses included only members of the Ascomycota and Basidiomycota. The four-locus analysis resolved multiple deep relationships within the Ascomycota and Basidiomycota that were not revealed previously or that received only weak support in previous studies. The impact of this newly discovered phylogenetic structure on supraordinal classifications is discussed. Based on these results and reanalysis of subcellular data, current knowledge of the evolution of septal features of fungal hyphae is synthesized, and a preliminary reassessment of ascomal evolution is presented. Based on previously unpublished data and sequences from GenBank, this study provides a phylogenetic synthesis for the Fungi and a framework for future phylogenetic studies on fungi.

754 citations

Journal ArticleDOI
TL;DR: Evidence is provided that genes encoding miRNAs in plants originated by inverted duplication of target gene sequences, and a model for miRNA evolution is proposed that suggests a mechanism for de novo generation of new miRNA genes with unique target specificities.
Abstract: MicroRNAs (miRNAs) in plants and animals function as post-transcriptional regulators of target genes, many of which are involved in multicellular development. miRNAs guide effector complexes to target mRNAs through base-pair complementarity, facilitating site-specific cleavage or translational repression. Biogenesis of miRNAs involves nucleolytic processing of a precursor transcript with extensive foldback structure. Here, we provide evidence that genes encoding miRNAs in plants originated by inverted duplication of target gene sequences. Several recently evolved genes encoding miRNAs in Arabidopsis thaliana and other small RNA‐generating loci possess the hallmarks of inverted duplication events that formed the arms on each side of their respective foldback precursors. We propose a model for miRNA evolution that suggests a mechanism for de novo generation of new miRNA genes with unique target specificities.

609 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
23 Jan 2014-Nature
TL;DR: Increases in the abundance and activity of Bilophila wadsworthia on the animal-based diet support a link between dietary fat, bile acids and the outgrowth of microorganisms capable of triggering inflammatory bowel disease.
Abstract: Long-term dietary intake influences the structure and activity of the trillions of microorganisms residing in the human gut, but it remains unclear how rapidly and reproducibly the human gut microbiome responds to short-term macronutrient change. Here we show that the short-term consumption of diets composed entirely of animal or plant products alters microbial community structure and overwhelms inter-individual differences in microbial gene expression. The animal-based diet increased the abundance of bile-tolerant microorganisms (Alistipes, Bilophila and Bacteroides) and decreased the levels of Firmicutes that metabolize dietary plant polysaccharides (Roseburia, Eubacterium rectale and Ruminococcus bromii). Microbial activity mirrored differences between herbivorous and carnivorous mammals, reflecting trade-offs between carbohydrate and protein fermentation. Foodborne microbes from both diets transiently colonized the gut, including bacteria, fungi and even viruses. Finally, increases in the abundance and activity of Bilophila wadsworthia on the animal-based diet support a link between dietary fat, bile acids and the outgrowth of microorganisms capable of triggering inflammatory bowel disease. In concert, these results demonstrate that the gut microbiome can rapidly respond to altered diet, potentially facilitating the diversity of human dietary lifestyles.

7,032 citations

01 Aug 2000
TL;DR: Assessment of medical technology in the context of commercialization with Bioentrepreneur course, which addresses many issues unique to biomedical products.
Abstract: BIOE 402. Medical Technology Assessment. 2 or 3 hours. Bioentrepreneur course. Assessment of medical technology in the context of commercialization. Objectives, competition, market share, funding, pricing, manufacturing, growth, and intellectual property; many issues unique to biomedical products. Course Information: 2 undergraduate hours. 3 graduate hours. Prerequisite(s): Junior standing or above and consent of the instructor.

4,833 citations

Journal ArticleDOI
TL;DR: Among the regions of the ribosomal cistron, the internal transcribed spacer (ITS) region has the highest probability of successful identification for the broadest range of fungi, with the most clearly defined barcode gap between inter- and intraspecific variation.
Abstract: Six DNA regions were evaluated as potential DNA barcodes for Fungi, the second largest kingdom of eukaryotic life, by a multinational, multilaboratory consortium. The region of the mitochondrial cytochrome c oxidase subunit 1 used as the animal barcode was excluded as a potential marker, because it is difficult to amplify in fungi, often includes large introns, and can be insufficiently variable. Three subunits from the nuclear ribosomal RNA cistron were compared together with regions of three representative protein-coding genes (largest subunit of RNA polymerase II, second largest subunit of RNA polymerase II, and minichromosome maintenance protein). Although the protein-coding gene regions often had a higher percent of correct identification compared with ribosomal markers, low PCR amplification and sequencing success eliminated them as candidates for a universal fungal barcode. Among the regions of the ribosomal cistron, the internal transcribed spacer (ITS) region has the highest probability of successful identification for the broadest range of fungi, with the most clearly defined barcode gap between inter- and intraspecific variation. The nuclear ribosomal large subunit, a popular phylogenetic marker in certain groups, had superior species resolution in some taxonomic groups, such as the early diverging lineages and the ascomycete yeasts, but was otherwise slightly inferior to the ITS. The nuclear ribosomal small subunit has poor species-level resolution in fungi. ITS will be formally proposed for adoption as the primary fungal barcode marker to the Consortium for the Barcode of Life, with the possibility that supplementary barcodes may be developed for particular narrowly circumscribed taxonomic groups.

4,116 citations

Journal ArticleDOI
TL;DR: The approach to utilizing available RNA-Seq and other data types in the authors' manual curation process for vertebrate, plant, and other species is summarized, and a new direction for prokaryotic genomes and protein name management is described.
Abstract: The RefSeq project at the National Center for Biotechnology Information (NCBI) maintains and curates a publicly available database of annotated genomic, transcript, and protein sequence records (http://www.ncbi.nlm.nih.gov/refseq/). The RefSeq project leverages the data submitted to the International Nucleotide Sequence Database Collaboration (INSDC) against a combination of computation, manual curation, and collaboration to produce a standard set of stable, non-redundant reference sequences. The RefSeq project augments these reference sequences with current knowledge including publications, functional features and informative nomenclature. The database currently represents sequences from more than 55,000 organisms (>4800 viruses, >40,000 prokaryotes and >10,000 eukaryotes; RefSeq release 71), ranging from a single record to complete genomes. This paper summarizes the current status of the viral, prokaryotic, and eukaryotic branches of the RefSeq project, reports on improvements to data access and details efforts to further expand the taxonomic representation of the collection. We also highlight diverse functional curation initiatives that support multiple uses of RefSeq data including taxonomic validation, genome annotation, comparative genomics, and clinical testing. We summarize our approach to utilizing available RNA-Seq and other data types in our manual curation process for vertebrate, plant, and other species, and describe a new direction for prokaryotic genomes and protein name management.

4,104 citations