scispace - formally typeset
Search or ask a question
Author

Giancarlo Canavese

Other affiliations: Istituto Italiano di Tecnologia
Bio: Giancarlo Canavese is an academic researcher from Polytechnic University of Turin. The author has contributed to research in topics: Piezoresistive effect & Piezoelectricity. The author has an hindex of 30, co-authored 101 publications receiving 2662 citations. Previous affiliations of Giancarlo Canavese include Istituto Italiano di Tecnologia.


Papers
More filters
Journal ArticleDOI
14 Mar 2014-Sensors
TL;DR: This work provides a review on the different type of composite materials, classified according to the conduction mechanism and analyzing the physics behind it, with a perspective overview on the most used filler types and polymeric matrices.
Abstract: The large expansion of the robotic field in the last decades has created a growing interest in the research and development of tactile sensing solutions for robot hand and body integration. Piezoresistive composites are one of the most widely employed materials for this purpose, combining simple and low cost preparation with high flexibility and conformability to surfaces, low power consumption, and the use of simple read-out electronics. This work provides a review on the different type of composite materials, classified according to the conduction mechanism and analyzing the physics behind it. In particular piezoresistors, strain gauges, percolative and quantum tunnelling devices are reviewed here, with a perspective overview on the most used filler types and polymeric matrices. A description of the state-of-the-art of the tactile sensor solutions from the point of view of the architecture, the design and the performance is also reviewed, with a perspective outlook on the main promising applications.

350 citations

Journal ArticleDOI
TL;DR: An environmental friendly sonophotocatalytic approach to efficiently treat polluted waters from industrial dyes exploiting ZnO micro- and nano-materials shows a great potential and a starting point to investigate further the efficient treatment of organic dyes in wastewater.
Abstract: In this work, it is proposed an environmental friendly sonophotocatalytic approach to efficiently treat polluted waters from industrial dyes exploiting ZnO micro- and nano-materials. For the first time, we deeply investigated the generation of reactive oxygen species (ROS) under ultrasound stimulation of different ZnO structures by Electron Paramagnetic Resonance Spectroscopy (EPR). Indeed, five zinc oxide (ZnO) micro- and nano-structures, i.e. Desert Roses (DRs), Multipods (MPs), Microwires (MWs), Nanoparticles (NPs) and Nanowires (NWs), were studied for the Rhodamine B (RhB) sonodegradation under ultrasonic irradiation. The DRs microparticles demonstrated the best sonocatalytic performance (100% degradation of RhB in 180 min) and the highest OH· radicals generation under ultrasonic irradiation. Strikingly, the coupling of ultrasound and sun-light irradiation in a sonophotodegradation approach led to 100% degradation efficiency, i.e. color reduction, of RhB in just 10 min, revealing a great positive synergy between the photocatalytic and sonocatalytic mechanisms. The RhB sonophotocatalytic degradation was also evaluated at different initial dye concentrations and with the presence of anions in solution. It was demonstrated a good stability over repeated cycles of dye treatment, which probe the applicability of this technique with industrial effluents. In conclusion, sonophotocatalytic degradation synergizing sunlight and ultrasound in the presence of DRs microparticles shows a great potential and a starting point to investigate further the efficient treatment of organic dyes in wastewater.

309 citations

Journal ArticleDOI
TL;DR: This review article focuses on therapeutically-active nanoparticles (NPs) when stimulated by ultrasound and the possible working mechanisms under debate of NPs-assisted sonodynamic treatments, showing that this very innovative and promising approach is however still at its infancy in the clinical cancer treatment.

244 citations

Journal ArticleDOI
TL;DR: Current versus voltage (I-V) characteristics showed a consistent switching behavior of the ferroelectric polar domains, thus revealing the importance of the confined and oriented crystallization of the polymer in monodimensional nanoarchitectures.
Abstract: The dimensional confinement and oriented crystallization are both key factors in determining the piezoelectric properties of a polymeric nanostructured material Here we prepare arrays of one-dimensional polymeric nanowires showing piezoelectric features by template-wetting two distinct polymers into anodic porous alumina (APA) membranes In particular, poly(vinylidene fluoride), PVDF, and its copolymer poly(vinylidene fluoride-trifluoroethylene), PVTF, are obtained in commercially available APA, showing a final diameter of about 200 nm and several micrometers in length, reflecting the templating matrix features We show that the crystallization of both polymers into a ferroelectric phase is directed by the nanotemplate confinement Interestingly, the PVDF nanowires mainly crystallize into the β-phase in the nanoporous matrix, whereas the reference thin film of PVDF crystallizes in the α nonpolar phase In the case of the PVTF nanowires, needle-like crystals oriented perpendicularly to the APA channel wal

139 citations

Journal ArticleDOI
TL;DR: In this article, a tactile sensor based on piezoresistive sensing material, constituted by a polymeric composite with nanostructured spiky particles as filler, is presented.
Abstract: We present a robust and flexible tactile sensor based on piezoresistive sensing material, constituted by a polymeric composite with nanostructured spiky particles as filler. The composite is able to exploit tunneling conduction mechanism when subjected to a compressive load. We have here integrated this quantum tunneling composite (QTC) with an ad-hoc electronic read-out circuit. In addition a software interface can monitor and visualize the applied mechanical pressure, thus leading to a complete tactile sensor device. Concerning the sensing material, the piezoresistive composite shows an enhanced tunneling conduction due to the presence of nickel particles with nanostructured sharp tips embedded in a silicone matrix. We registered an increase up to nine orders of magnitude of the composite electrical conduction in response to a mechanical strain. The sensor consisted in a continuous layer of functional composite sandwiched between a matrix of patterned top and bottom electrodes. The planar sensor can thus be modeled as a two-dimensional array of resistors whose value decreases by increasing the applied pressure. We also designed an ad-hoc electronic read-out circuit, able to read and process the resistance variations of the sensor upon a compressive load, thus providing not only the pressure intensity but also the pressure distribution data. A software interface was able to achieve the real-time tridimensional response and lead to the visualization of the compressed regions on the sensor. The present device is an efficient and low-cost prototype of tactile sensing skin, thus readily enabling its use for human robotic applications.

91 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Electronic networks comprised of flexible, stretchable, and robust devices that are compatible with large-area implementation and integrated with multiple functionalities is a testament to the progress in developing an electronic skin akin to human skin.
Abstract: Human skin is a remarkable organ. It consists of an integrated, stretchable network of sensors that relay information about tactile and thermal stimuli to the brain, allowing us to maneuver within our environment safely and effectively. Interest in large-area networks of electronic devices inspired by human skin is motivated by the promise of creating autonomous intelligent robots and biomimetic prosthetics, among other applications. The development of electronic networks comprised of flexible, stretchable, and robust devices that are compatible with large-area implementation and integrated with multiple functionalities is a testament to the progress in developing an electronic skin (e-skin) akin to human skin. E-skins are already capable of providing augmented performance over their organic counterpart, both in superior spatial resolution and thermal sensitivity. They could be further improved through the incorporation of additional functionalities (e.g., chemical and biological sensing) and desired properties (e.g., biodegradability and self-powering). Continued rapid progress in this area is promising for the development of a fully integrated e-skin in the near future.

1,950 citations

01 Jan 2016

1,715 citations

Journal Article

[...]

1,682 citations

Journal ArticleDOI
07 Jul 2014-Sensors
TL;DR: This review focuses on recent advances in the field of Smart Textiles and pays particular attention to the materials and their manufacturing process, to highlight a possible trade-off between flexibility, ergonomics, low power consumption, integration and eventually autonomy.
Abstract: Electronic Textiles (e-textiles) are fabrics that feature electronics and interconnections woven into them, presenting physical flexibility and typical size that cannot be achieved with other existing electronic manufacturing techniques. Components and interconnections are intrinsic to the fabric and thus are less visible and not susceptible of becoming tangled or snagged by surrounding objects. E-textiles can also more easily adapt to fast changes in the computational and sensing requirements of any specific application, this one representing a useful feature for power management and context awareness. The vision behind wearable computing foresees future electronic systems to be an integral part of our everyday outfits. Such electronic devices have to meet special requirements concerning wearability. Wearable systems will be characterized by their ability to automatically recognize the activity and the behavioral status of their own user as well as of the situation around her/him, and to use this information to adjust the systems' configuration and functionality. This review focuses on recent advances in the field of Smart Textiles and pays particular attention to the materials and their manufacturing process. Each technique shows advantages and disadvantages and our aim is to highlight a possible trade-off between flexibility, ergonomics, low power consumption, integration and eventually autonomy.

1,576 citations