scispace - formally typeset
Search or ask a question
Author

Giancarlo Cella

Other affiliations: University of Pisa
Bio: Giancarlo Cella is an academic researcher from Istituto Nazionale di Fisica Nucleare. The author has contributed to research in topics: Gravitational wave & LIGO. The author has an hindex of 24, co-authored 48 publications receiving 13618 citations. Previous affiliations of Giancarlo Cella include University of Pisa.

Papers
More filters
Journal ArticleDOI
B. P. Abbott1, Richard J. Abbott1, T. D. Abbott2, Matthew Abernathy1  +1008 moreInstitutions (96)
TL;DR: This is the first direct detection of gravitational waves and the first observation of a binary black hole merger, and these observations demonstrate the existence of binary stellar-mass black hole systems.
Abstract: On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of $1.0 \times 10^{-21}$. It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203 000 years, equivalent to a significance greater than 5.1 {\sigma}. The source lies at a luminosity distance of $410^{+160}_{-180}$ Mpc corresponding to a redshift $z = 0.09^{+0.03}_{-0.04}$. In the source frame, the initial black hole masses are $36^{+5}_{-4} M_\odot$ and $29^{+4}_{-4} M_\odot$, and the final black hole mass is $62^{+4}_{-4} M_\odot$, with $3.0^{+0.5}_{-0.5} M_\odot c^2$ radiated in gravitational waves. All uncertainties define 90% credible intervals.These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of gravitational waves and the first observation of a binary black hole merger.

9,596 citations

Journal ArticleDOI
B. P. Abbott1, Richard J. Abbott1, T. D. Abbott2, Fausto Acernese3  +1062 moreInstitutions (115)
TL;DR: The magnitude of modifications to the gravitational-wave dispersion relation is constrain, the graviton mass is bound to m_{g}≤7.7×10^{-23} eV/c^{2} and null tests of general relativity are performed, finding that GW170104 is consistent with general relativity.
Abstract: We describe the observation of GW170104, a gravitational-wave signal produced by the coalescence of a pair of stellar-mass black holes. The signal was measured on January 4, 2017 at 10∶11:58.6 UTC by the twin advanced detectors of the Laser Interferometer Gravitational-Wave Observatory during their second observing run, with a network signal-to-noise ratio of 13 and a false alarm rate less than 1 in 70 000 years. The inferred component black hole masses are 31.2^(8.4) _(−6.0)M_⊙ and 19.4^(5.3)_( −5.9)M_⊙ (at the 90% credible level). The black hole spins are best constrained through measurement of the effective inspiral spin parameter, a mass-weighted combination of the spin components perpendicular to the orbital plane, χ_(eff) = −0.12^(0.21)_( −0.30). This result implies that spin configurations with both component spins positively aligned with the orbital angular momentum are disfavored. The source luminosity distance is 880^(450)_(−390) Mpc corresponding to a redshift of z = 0.18^(0.08)_( −0.07) . We constrain the magnitude of modifications to the gravitational-wave dispersion relation and perform null tests of general relativity. Assuming that gravitons are dispersed in vacuum like massive particles, we bound the graviton mass to m_g ≤ 7.7 × 10^(−23) eV/c^2. In all cases, we find that GW170104 is consistent with general relativity.

2,569 citations

Journal ArticleDOI
B. P. Abbott1, Richard J. Abbott1, T. D. Abbott2, Matthew Abernathy1  +961 moreInstitutions (100)
TL;DR: The discovery of the GW150914 with the Advanced LIGO detectors provides the first observational evidence for the existence of binary black-hole systems that inspiral and merge within the age of the Universe as mentioned in this paper.
Abstract: The discovery of the gravitational-wave source GW150914 with the Advanced LIGO detectors provides the first observational evidence for the existence of binary black-hole systems that inspiral and merge within the age of the Universe. Such black-hole mergers have been predicted in two main types of formation models, involving isolated binaries in galactic fields or dynamical interactions in young and old dense stellar environments. The measured masses robustly demonstrate that relatively "heavy" black holes (≳25M⊙) can form in nature. This discovery implies relatively weak massive-star winds and thus the formation of GW150914 in an environment with metallicity lower than ∼1/2 of the solar value. The rate of binary black-hole mergers inferred from the observation of GW150914 is consistent with the higher end of rate predictions (≳1Gpc−3yr−1) from both types of formation models. The low measured redshift (z∼0.1) of GW150914 and the low inferred metallicity of the stellar progenitor imply either binary black-hole formation in a low-mass galaxy in the local Universe and a prompt merger, or formation at high redshift with a time delay between formation and merger of several Gyr. This discovery motivates further studies of binary-black-hole formation astrophysics. It also has implications for future detections and studies by Advanced LIGO and Advanced Virgo, and gravitational-wave detectors in space.

742 citations

Journal ArticleDOI
Stefan Hild1, M. R. Abernathy1, Fausto Acernese2, Pau Amaro-Seoane3, Nils Andersson4, K. G. Arun5, Fabrizio Barone2, B. Barr1, M. Barsuglia, Mark Beker, N. Beveridge1, S. Birindelli6, Suvadeep Bose7, L. Bosi, S. Braccini8, C. Bradaschia8, Tomasz Bulik9, Enrico Calloni10, Giancarlo Cella8, E. Chassande Mottin, S. Chelkowski11, Andrea Chincarini, James S. Clark12, E. Coccia13, C. Colacino8, J. Colas, A. Cumming1, L. Cunningham1, E. Cuoco, S. L. Danilishin14, Karsten Danzmann3, R. De Salvo15, T. Dent12, R. De Rosa10, L. Di Fiore10, A. Di Virgilio8, M. Doets16, V. Fafone13, Paolo Falferi17, R. Flaminio, J. Franc, F. Frasconi8, Andreas Freise11, D. Friedrich18, Paul Fulda11, Jonathan R. Gair19, Gianluca Gemme, E. Genin, A. Gennai11, A. Giazotto8, Kostas Glampedakis20, Christian Gräf3, M. Granata, Hartmut Grote3, G. M. Guidi21, A. Gurkovsky14, G. D. Hammond1, Mark Hannam12, Jan Harms15, D. Heinert22, Martin Hendry1, Ik Siong Heng1, E. Hennes, J. H. Hough, Sascha Husa23, S. H. Huttner1, G. T. Jones12, F. Y. Khalili14, Keiko Kokeyama11, Kostas D. Kokkotas20, Badri Krishnan3, Tjonnie G. F. Li, M. Lorenzini, H. Lück3, Ettore Majorana, Ilya Mandel24, Vuk Mandic25, M. Mantovani8, I. W. Martin1, Christine Michel, Y. Minenkov13, N. Morgado, S. Mosca10, B. Mours26, Helge Müller-Ebhardt18, P. G. Murray1, Ronny Nawrodt1, Ronny Nawrodt22, John Nelson1, Richard O'Shaughnessy27, Christian D. Ott15, C. Palomba, Angela Delli Paoli, G. Parguez, A. Pasqualetti, R. Passaquieti8, R. Passaquieti28, D. Passuello8, Laurent Pinard, Wolfango Plastino29, Rosa Poggiani8, Rosa Poggiani28, P. Popolizio, Mirko Prato, M. Punturo, P. Puppo, D. S. Rabeling16, P. Rapagnani30, Jocelyn Read31, Tania Regimbau6, H. Rehbein3, S. Reid1, F. Ricci30, F. Richard, A. Rocchi, Sheila Rowan1, A. Rüdiger3, Lucía Santamaría15, Benoit Sassolas, Bangalore Suryanarayana Sathyaprakash12, Roman Schnabel3, C. Schwarz22, Paul Seidel22, Alicia M. Sintes23, Kentaro Somiya15, Fiona C. Speirits1, Kenneth A. Strain1, S. E. Strigin14, P. J. Sutton12, S. P. Tarabrin18, Andre Thüring3, J. F. J. van den Brand16, M. van Veggel1, C. Van Den Broeck, Alberto Vecchio11, John Veitch12, F. Vetrano21, A. Viceré21, S. P. Vyatchanin14, Benno Willke3, Graham Woan1, Kazuhiro Yamamoto 
TL;DR: In this article, a special focus is set on evaluating the frequency band below 10 Hz where a complex mixture of seismic, gravity gradient, suspension thermal and radiation pressure noise dominates, including the most relevant fundamental noise contributions.
Abstract: Advanced gravitational wave detectors, currently under construction, are expected to directly observe gravitational wave signals of astrophysical origin. The Einstein Telescope (ET), a third-generation gravitational wave detector, has been proposed in order to fully open up the emerging field of gravitational wave astronomy. In this paper we describe sensitivity models for ET and investigate potential limits imposed by fundamental noise sources. A special focus is set on evaluating the frequency band below 10 Hz where a complex mixture of seismic, gravity gradient, suspension thermal and radiation pressure noise dominates. We develop the most accurate sensitivity model, referred to as ET-D, for a third-generation detector so far, including the most relevant fundamental noise contributions.

682 citations

Journal ArticleDOI
B. P. Abbott1, Richard J. Abbott1, T. D. Abbott2, Matthew Abernathy1  +955 moreInstitutions (96)
TL;DR: Following a major upgrade, the two advanced detectors of the Laser Interferometer Gravitational-wave Observatory (LIGO) held their first observation run between September 2015 and January 2016, and observed a transient gravitational-wave signal determined to be the coalescence of two black holes.
Abstract: Following a major upgrade, the two advanced detectors of the Laser Interferometer Gravitational-wave Observatory (LIGO) held their first observation run between September 2015 and January 2016. With a strain sensitivity of $10^{-23}/\sqrt{\mathrm{Hz}}$ at 100 Hz, the product of observable volume and measurement time exceeded that of all previous runs within the first 16 days of coincident observation. On September 14th, 2015 the Advanced LIGO detectors observed a transient gravitational-wave signal determined to be the coalescence of two black holes [Phys. Rev. Lett. 116, 061102 (2016)], launching the era of gravitational-wave astronomy. The event, GW150914, was observed with a combined signal-to-noise ratio of 24 in coincidence by the two detectors. Here we present the main features of the detectors that enabled this observation. At full sensitivity, the Advanced LIGO detectors are designed to deliver another factor of three improvement in the signal-to-noise ratio for binary black hole systems similar in masses to GW150914.

539 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: SciPy as discussed by the authors is an open source scientific computing library for the Python programming language, which includes functionality spanning clustering, Fourier transforms, integration, interpolation, file I/O, linear algebra, image processing, orthogonal distance regression, minimization algorithms, signal processing, sparse matrix handling, computational geometry, and statistics.
Abstract: SciPy is an open source scientific computing library for the Python programming language. SciPy 1.0 was released in late 2017, about 16 years after the original version 0.1 release. SciPy has become a de facto standard for leveraging scientific algorithms in the Python programming language, with more than 600 unique code contributors, thousands of dependent packages, over 100,000 dependent repositories, and millions of downloads per year. This includes usage of SciPy in almost half of all machine learning projects on GitHub, and usage by high profile projects including LIGO gravitational wave analysis and creation of the first-ever image of a black hole (M87). The library includes functionality spanning clustering, Fourier transforms, integration, interpolation, file I/O, linear algebra, image processing, orthogonal distance regression, minimization algorithms, signal processing, sparse matrix handling, computational geometry, and statistics. In this work, we provide an overview of the capabilities and development practices of the SciPy library and highlight some recent technical developments.

12,774 citations

Journal ArticleDOI
16 Sep 2020-Nature
TL;DR: In this paper, the authors review how a few fundamental array concepts lead to a simple and powerful programming paradigm for organizing, exploring and analysing scientific data, and their evolution into a flexible interoperability layer between increasingly specialized computational libraries is discussed.
Abstract: Array programming provides a powerful, compact and expressive syntax for accessing, manipulating and operating on data in vectors, matrices and higher-dimensional arrays. NumPy is the primary array programming library for the Python language. It has an essential role in research analysis pipelines in fields as diverse as physics, chemistry, astronomy, geoscience, biology, psychology, materials science, engineering, finance and economics. For example, in astronomy, NumPy was an important part of the software stack used in the discovery of gravitational waves1 and in the first imaging of a black hole2. Here we review how a few fundamental array concepts lead to a simple and powerful programming paradigm for organizing, exploring and analysing scientific data. NumPy is the foundation upon which the scientific Python ecosystem is constructed. It is so pervasive that several projects, targeting audiences with specialized needs, have developed their own NumPy-like interfaces and array objects. Owing to its central position in the ecosystem, NumPy increasingly acts as an interoperability layer between such array computation libraries and, together with its application programming interface (API), provides a flexible framework to support the next decade of scientific and industrial analysis. NumPy is the primary array programming library for Python; here its fundamental concepts are reviewed and its evolution into a flexible interoperability layer between increasingly specialized computational libraries is discussed.

7,624 citations

Journal ArticleDOI
B. P. Abbott1, Richard J. Abbott1, T. D. Abbott2, Fausto Acernese3  +1131 moreInstitutions (123)
TL;DR: The association of GRB 170817A, detected by Fermi-GBM 1.7 s after the coalescence, corroborates the hypothesis of a neutron star merger and provides the first direct evidence of a link between these mergers and short γ-ray bursts.
Abstract: On August 17, 2017 at 12∶41:04 UTC the Advanced LIGO and Advanced Virgo gravitational-wave detectors made their first observation of a binary neutron star inspiral. The signal, GW170817, was detected with a combined signal-to-noise ratio of 32.4 and a false-alarm-rate estimate of less than one per 8.0×10^{4} years. We infer the component masses of the binary to be between 0.86 and 2.26 M_{⊙}, in agreement with masses of known neutron stars. Restricting the component spins to the range inferred in binary neutron stars, we find the component masses to be in the range 1.17-1.60 M_{⊙}, with the total mass of the system 2.74_{-0.01}^{+0.04}M_{⊙}. The source was localized within a sky region of 28 deg^{2} (90% probability) and had a luminosity distance of 40_{-14}^{+8} Mpc, the closest and most precisely localized gravitational-wave signal yet. The association with the γ-ray burst GRB 170817A, detected by Fermi-GBM 1.7 s after the coalescence, corroborates the hypothesis of a neutron star merger and provides the first direct evidence of a link between these mergers and short γ-ray bursts. Subsequent identification of transient counterparts across the electromagnetic spectrum in the same location further supports the interpretation of this event as a neutron star merger. This unprecedented joint gravitational and electromagnetic observation provides insight into astrophysics, dense matter, gravitation, and cosmology.

7,327 citations