scispace - formally typeset
Search or ask a question
Author

Gianni Di Domenico

Other affiliations: University of Fribourg
Bio: Gianni Di Domenico is an academic researcher from University of Neuchâtel. The author has contributed to research in topics: Laser & Laser linewidth. The author has an hindex of 12, co-authored 19 publications receiving 735 citations. Previous affiliations of Gianni Di Domenico include University of Fribourg.

Papers
More filters
Journal ArticleDOI
TL;DR: A simple approach to this relation with an approximate formula for evaluation of the laser linewidth that can be applied to arbitrary noise spectral densities is presented.
Abstract: Frequency fluctuations of lasers cause a broadening of their line shapes. Although the relation between the frequency noise spectrum and the laser line shape has been studied extensively, no simple expression exists to evaluate the laser linewidth for frequency noise spectra that does not follow a power law. We present a simple approach to this relation with an approximate formula for evaluation of the laser linewidth that can be applied to arbitrary noise spectral densities.

520 citations

Journal ArticleDOI
TL;DR: The fractional frequency stability of the CEO-beat is 20‑fold better than measured in a standard self-referenced commercial fiber comb system and contributes only 10(-15) to the optical carrier frequency instability at 1 s averaging time.
Abstract: We report the first full stabilization of an optical frequency comb generated from a femtosecond diode-pumped solid-state laser (DPSSL) operating in the 1.5-μm spectral region. The stability of the comb is characterized in free-running and in phase-locked operation by measuring the noise properties of the carrier-envelope offset (CEO) beat, of the repetition rate, and of a comb line at 1558 nm. The high Q-factor of the semiconductor saturable absorber mirror (SESAM)-modelocked 1.5-µm DPSSL results in a low-noise CEO-beat, for which a tight phase lock can be much more easily realized than for a fiber comb. Using a moderate feedback bandwidth of only 5.5 kHz, we achieved a residual integrated phase noise of 0.72 rad rms for the locked CEO, which is one of the smallest values reported for a frequency comb system operating in this spectral region. The fractional frequency stability of the CEO-beat is 20‑fold better than measured in a standard self-referenced commercial fiber comb system and contributes only 10−15 to the optical carrier frequency instability at 1 s averaging time.

59 citations

Journal ArticleDOI
TL;DR: An experimental validation of a much simpler geometrical approximation applicable to any arbitrary frequency noise spectrum using laser sources of different spectral characteristics finds a very good agreement between the approximate and directly measured linewidths.
Abstract: Laser frequency fluctuations can be characterized either comprehensively by the frequency noise spectrum or in a simple but incomplete manner by the laser linewidth. A formal relation exists to calculate the linewidth from the frequency noise spectrum, but it is laborious to apply in practice. We recently proposed a much simpler geometrical approximation applicable to any arbitrary frequency noise spectrum. Here we present an experimental validation of this approximation using laser sources of different spectral characteristics. For each of them, we measured both the frequency noise spectrum to calculate the approximate linewidth and the actual linewidth directly. We observe a very good agreement between the approximate and directly measured linewidths over a broad range of values (from kilohertz to megahertz) and for significantly different laser line shapes.

49 citations

Journal ArticleDOI
TL;DR: A radio-frequency discriminator based on a voltage-controlled oscillator phase-locked to the signal under test, which has been developed to analyze the frequency noise properties of an RF signal, e.g., a heterodyne optical beat signal between two lasers or between a laser and an optical frequency comb is described.
Abstract: We describe a radio-frequency (RF) discriminator, or frequency-to-voltage converter, based on a voltage-controlled oscillator phase-locked to the signal under test, which has been developed to analyze the frequency noise properties of an RF signal, e.g., a heterodyne optical beat signal between two lasers or between a laser and an optical frequency comb. We present a detailed characterization of the properties of this discriminator and we compare it to three other commercially available discriminators. Owing to its large linear frequency range of 7 MHz, its bandwidth of 200 kHz and its noise floor below 0.01 Hz2/Hz in a significant part of the spectrum, our frequency discriminator is able to fully characterize the frequency noise of a beat signal with a linewidth ranging from a couple of megahertz down to a few hertz. As an example of application, we present measurements of the frequency noise of the carrier envelope offset beat in a low-noise optical frequency comb.

41 citations

Journal ArticleDOI
TL;DR: In this article, the wavelength tuning response for direct current modulation of two mid-IR QCLs from different suppliers was measured from 10 Hz up to several MHz using ro-vibrational molecular resonances as frequency-to-intensity converters.
Abstract: We report on the wavelength tuning dynamics in continuous-wave distributed feedback quantum cascade lasers (QCLs). The wavelength tuning response for direct current modulation of two mid-IR QCLs from different suppliers was measured from 10 Hz up to several MHz using ro-vibrational molecular resonances as frequency-to-intensity converters. Unlike the output intensity, which can be modulated up to several gigahertz, the frequency-modulation bandwidth was found to be on the order of 200 kHz, limited by the laser thermal dynamics. A non-negligible roll-off and a significant phase shift are observed above a few hundred hertz already and explained by a thermal model.

33 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This review takes a tutorial approach to illustrate how 20 years of source development and technology has facilitated the journey of optical frequency combs from the lab into the field, and a view to the future with these technologies.
Abstract: Optical frequency combs were developed nearly two decades ago to support the world’s most precise atomic clocks. Acting as precision optical synthesizers, frequency combs enable the precise transfer of phase and frequency information from a high-stability reference to hundreds of thousands of tones in the optical domain. This versatility, coupled with near-continuous spectroscopic coverage from microwave frequencies to the extreme ultra-violet, has enabled precision measurement capabilities in both fundamental and applied contexts. This review takes a tutorial approach to illustrate how 20 years of source development and technology has facilitated the journey of optical frequency combs from the lab into the field. Optical frequency combs were realized nearly two decades ago to support the development of the world’s most precise atomic clocks, but their versatility has since made them useful instruments well beyond their original goal, and spans across a wide variety of fundamental and applied physics in a wide range of wavelengths. Fortier and Baumann present a comprehensive review of developments in optical frequency comb technology and a view to the future with these technologies.

311 citations

Journal ArticleDOI
TL;DR: It is reached the point where the residual carrier–envelope-offset phase jitter and pulse timing jitter performance of such laser sources can be fully optimized to the unprecedented levels of attoseconds regime.
Abstract: We review the most recent progress in ultralow-noise mode-locked fiber lasers and fiber-based frequency-comb sources. With the rapid progress in theory, measurement, and control of noise in passively mode-locked fiber lasers, we have reached the point where the residual carrier–envelope-offset phase jitter (when stabilized) and pulse timing jitter performance of such laser sources can be fully optimized to the unprecedented levels of attoseconds regime. In this paper, first, major principles in building such low-noise passively mode-locked fiber lasers are reviewed. We then define noise in mode-locked fiber lasers and present the basic theoretical and numerical framework for analyzing the noise in mode-locked fiber lasers. More detailed discussions on theory, measurement methods, state-of-the-art performances, and stabilization methods of intensity noise, timing jitter, and comb-line frequency noise follow. Finally, we overview today’s most representative applications of such ultralow-noise mode-locked fiber lasers and frequency-comb sources. As an already powerful tool for various high-precision applications, ultralow-noise mode-locked fiber lasers will keep finding more exciting applications in optical science and photonic technology in the coming years.

294 citations

Journal ArticleDOI
TL;DR: The impact active silicon photonic integrated circuits could have on interconnects, telecommunications, sensors, and silicon electronics is reviewed in this article, where the authors present a review of recent breakthroughs in the Silicon photonic technology and components.
Abstract: We review recent breakthroughs in the silicon photonic technology and components, and describe progress in silicon photonic integrated circuits. Heterogeneous silicon photonics has recently demonstrated performance that significantly outperforms native III/V components. The impact active silicon photonic integrated circuits could have on interconnects, telecommunications, sensors, and silicon electronics is reviewed.

265 citations

Journal ArticleDOI
TL;DR: An overview of the work done with the Laboratoire National de Metrologie et d'Essais-Systemes de Reference Temps-Espace (LNE-SYRTE) fountain ensemble during the last five years is given, and recent studies of several systematic frequency shifts are reviewed.
Abstract: We give an overview of the work done with the Laboratoire National de Metrologie et d'Essais-Systemes de Reference Temps-Espace (LNE-SYRTE) fountain ensemble during the last five years. After a description of the clock ensemble, comprising three fountains, FO1, FO2, and FOM, and the newest developments, we review recent studies of several systematic frequency shifts. This includes the distributed cavity phase shift, which we evaluate for the FO1 and FOM fountains, applying the techniques of our recent work on FO2. We also report calculations of the microwave lensing frequency shift for the three fountains, review the status of the blackbody radiation shift, and summarize recent experimental work to control microwave leakage and spurious phase perturbations. We give current accuracy budgets. We also describe several applications in time and frequency metrology: fountain comparisons, calibrations of the international atomic time, secondary representation of the SI second based on the 87Rb hyperfine frequency, absolute measurements of optical frequencies, tests of the T2L2 satellite laser link, and review fundamental physics applications of the LNE-SYRTE fountain ensemble. Finally, we give a summary of the tests of the PHARAO cold atom space clock performed using the FOM transportable fountain.

259 citations

Journal ArticleDOI
TL;DR: The noise characteristics of whispering-gallery-mode resonators are shown and a resonator-stabilized laser at this limit is demonstrated by compensating the intrinsic thermal expansion, allowing a sub-25 Hz linewidth and a 32 Hz Allan deviation.
Abstract: Ultrastable high-spectral-purity lasers have served as the cornerstone behind optical atomic clocks, quantum measurements, precision optical-microwave generation, high resolution optical spectroscopy and sensing. Hertz-level lasers stabilized to high finesse Fabry-Perot mirror cavities are typically used for these studies but are large and fragile such that they have remained laboratory instruments. There is a clear demand in rugged miniaturized lasers operating potentially at comparable stabilities to those bulk lasers. Over the past decade, ultrahigh-Q optical whispering-gallery-mode (WGM) resonators have served as a platform for low-noise microlasers but have not yet reached the ultimate stabilities defined by their fundamental noise. Here, we show the noise characteristics of WGM resonators and demonstrate a resonator-stabilized laser at the fundamental limit by compensating the intrinsic thermal expansion of a WGM resonator, allowing a sub-25 Hz linewidth and a 32 Hz Allan deviation on the 191 THz carrier in 100 ms integration. We also reveal the environmental sensitivities of the resonator at the thermodynamical noise limit and long-term frequency drifts governed by random-walk-noise statistics.

161 citations