scispace - formally typeset
Search or ask a question
Author

Gianrico Farrugia

Bio: Gianrico Farrugia is an academic researcher from Mayo Clinic. The author has contributed to research in topics: Interstitial cell of Cajal & Gastroparesis. The author has an hindex of 71, co-authored 450 publications receiving 17810 citations. Previous affiliations of Gianrico Farrugia include Boston University & State University of New York System.


Papers
More filters
Journal ArticleDOI
TL;DR: Gut microbiota acting through SCFAs are important determinants of enteric 5‐HT production and homeostasis through an effect of short‐chain fatty acids on enterochromaffin cells.
Abstract: Gut microbiota alterations have been described in several diseases with altered gastrointestinal (GI) motility, and awareness is increasing regarding the role of the gut microbiome in modulating GI function. Serotonin [5-hydroxytryptamine (5-HT)] is a key regulator of GI motility and secretion. To determine the relationship among gut microbes, colonic contractility, and host serotonergic gene expression, we evaluated mice that were germ-free (GF) or humanized (HM; ex-GF colonized with human gut microbiota). 5-HT reduced contractile duration in both GF and HM colons. Microbiota from HM and conventionally raised (CR) mice significantly increased colonic mRNAs Tph1 [(tryptophan hydroxylase) 1, rate limiting for mucosal 5-HT synthesis; P < 0.01] and chromogranin A (neuroendocrine secretion; P < 0.01), with no effect on monoamine oxidase A (serotonin catabolism), serotonin receptor 5-HT4, or mouse serotonin transporter. HM and CR mice also had increased colonic Tph1 protein (P < 0.05) and 5-HT concentrations (GF, 17 ± 3 ng/mg; HM, 25 ± 2 ng/mg; and CR, 35 ± 3 ng/mg; P < 0.05). Enterochromaffin (EC) cell numbers (cells producing 5-HT) were unchanged. Short-chain fatty acids (SCFAs) promoted TPH1 transcription in BON cells (human EC cell model). Thus, gut microbiota acting through SCFAs are important determinants of enteric 5-HT production and homeostasis.

774 citations

Journal ArticleDOI
TL;DR: Seropositivity for antibodies that bind to or block ganglionic acetylcholine receptors identifies patients with various forms of autoimmune autonomic neuropathy and distinguishes these disorders from other types of dysautonomia.
Abstract: Background Idiopathic autonomic neuropathy is a severe, subacute disorder with a presumed autoimmune basis. It is indistinguishable from the subacute autonomic neuropathy that may accompany lung cancer or other tumors. Autoantibodies specific for nicotinic acetylcholine receptors in the autonomic ganglia are potentially pathogenic and may serve as serologic markers of various forms of autoimmune autonomic neuropathy. Methods We tested serum from 157 patients with a variety of types of dysautonomia. Immunoprecipitation assays with iodine-125–labeled epibatidine and solubilized human neuroblastoma acetylcholine receptors were used to detect autoantibodies that bound to or blocked ganglionic receptors. Results Ganglionic-receptor–binding antibodies were found in 19 of 46 patients with idiopathic or paraneoplastic autonomic neuropathy (41 percent), in 6 of 67 patients with postural tachycardia syndrome, idiopathic gastrointestinal dysmotility, or diabetic autonomic neuropathy (9 percent), and in none of 44 pa...

587 citations

Journal ArticleDOI
TL;DR: Diet can affect GI transit through microbiota-dependent or microbiota-independent pathways, depending on the type of dietary change, and the effect of the microbiota on transit largely depends on the amount and type of polysaccharides present in the diet.

368 citations

Journal ArticleDOI
TL;DR: In this article, the volume of interstitial cells of Cajal was determined in the normal sigmoid colon and in patients with slow transit constipation from patients who were stained with antibodies to protein gene product 9.5, c-kit and α-smooth muscle actin.

362 citations

Journal ArticleDOI
Gianrico Farrugia1
TL;DR: This review will describe what is known about the function and role of ICC both in health and in a variety of motility disorders with a focus on unresolved issues pertaining to their role in the control of gastrointestinal motility.
Abstract: The gastrointestinal tract serves the physiological function of digesting and absorbing nutrients from food and physically mixing and propelling these contents in an oral to anal direction. These functions require the coordinated interaction of several cell types, including enteric nerves, immune cells and smooth muscle. Interstitial cells of Cajal (ICC) are now recognized as another cell type that are required for the normal functioning of the gastrointestinal tract. Abnormalities in ICC numbers and networks are associated with several gastrointestinal motility disorders. This review will describe what is known about the function and role of ICC both in health and in a variety of motility disorders with a focus on unresolved issues pertaining to their role in the control of gastrointestinal motility.

344 citations


Cited by
More filters
Journal ArticleDOI
04 Oct 2012-Nature
TL;DR: MGWAS analysis showed that patients with type 2 diabetes were characterized by a moderate degree of gut microbial dysbiosis, a decrease in the abundance of some universal butyrate-producing bacteria and an increase in various opportunistic pathogens, as well as an enrichment of other microbial functions conferring sulphate reduction and oxidative stress resistance.
Abstract: Assessment and characterization of gut microbiota has become a major research area in human disease, including type 2 diabetes, the most prevalent endocrine disease worldwide. To carry out analysis on gut microbial content in patients with type 2 diabetes, we developed a protocol for a metagenome-wide association study (MGWAS) and undertook a two-stage MGWAS based on deep shotgun sequencing of the gut microbial DNA from 345 Chinese individuals. We identified and validated approximately 60,000 type-2-diabetes-associated markers and established the concept of a metagenomic linkage group, enabling taxonomic species-level analyses. MGWAS analysis showed that patients with type 2 diabetes were characterized by a moderate degree of gut microbial dysbiosis, a decrease in the abundance of some universal butyrate-producing bacteria and an increase in various opportunistic pathogens, as well as an enrichment of other microbial functions conferring sulphate reduction and oxidative stress resistance. An analysis of 23 additional individuals demonstrated that these gut microbial markers might be useful for classifying type 2 diabetes.

4,981 citations

Journal ArticleDOI
TL;DR: The advances in modeling and analysis of gut microbiota will further the authors' knowledge of their role in health and disease, allowing customization of existing and future therapeutic and prophylactic modalities.
Abstract: Gut microbiota is an assortment of microorganisms inhabiting the length and width of the mammalian gastrointestinal tract. The composition of this microbial community is host specific, evolving throughout an individual's lifetime and susceptible to both exogenous and endogenous modifications. Recent renewed interest in the structure and function of this "organ" has illuminated its central position in health and disease. The microbiota is intimately involved in numerous aspects of normal host physiology, from nutritional status to behavior and stress response. Additionally, they can be a central or a contributing cause of many diseases, affecting both near and far organ systems. The overall balance in the composition of the gut microbial community, as well as the presence or absence of key species capable of effecting specific responses, is important in ensuring homeostasis or lack thereof at the intestinal mucosa and beyond. The mechanisms through which microbiota exerts its beneficial or detrimental influences remain largely undefined, but include elaboration of signaling molecules and recognition of bacterial epitopes by both intestinal epithelial and mucosal immune cells. The advances in modeling and analysis of gut microbiota will further our knowledge of their role in health and disease, allowing customization of existing and future therapeutic and prophylactic modalities.

3,077 citations

Journal ArticleDOI
TL;DR: In this article, a new method for metagenomic biomarker discovery by way of class comparison, tests of biological consistency and effect size estimation is described and validated, which addresses the challenge of finding organisms, genes, or pathways that consistently explain the differences between two or more microbial communities.
Abstract: This study describes and validates a new method for metagenomic biomarker discovery by way of class comparison, tests of biological consistency and effect size estimation. This addresses the challenge of finding organisms, genes, or pathways that consistently explain the differences between two or more microbial communities, which is a central problem to the study of metagenomics. We extensively validate our method on several microbiomes and a convenient online interface for the method is provided at http://huttenhower.sph.harvard.edu/lefse/.

3,060 citations

Journal ArticleDOI
TL;DR: This review highlights the current information on molecular and biochemical properties of HO-1 and HO-2 and addresses the possible mechanisms for mutual regulatory interactions between the CO- and NO-generating systems.
Abstract: The heme oxygenase (HO) system consists of two forms identified to date: the oxidative stress-inducible protein HO-1 (HSP32) and the constitutive isozyme HO-2. These proteins, which are different gene products, have little in common in primary structure, regulation, or tissue distribution. Both, however, catalyze oxidation of heme to biologically active molecules: iron, a gene regulator; biliverdin, an antioxidant; and carbon monoxide, a heme ligand. Finding the impressive heme-degrading activity of brain led to the suggestion that "HO in brain has functions aside from heme degradation" and to subsequent exploration of carbon monoxide as a promising and potentially significant messenger molecule. There is much parallelism between the biological actions and functions of the CO- and NO-generating systems; and their regulation is intimately linked. This review highlights the current information on molecular and biochemical properties of HO-1 and HO-2 and addresses the possible mechanisms for mutual regulatory interactions between the CO- and NO-generating systems.

2,454 citations

Journal ArticleDOI
TL;DR: The hepatic stellate cell has surprised and engaged physiologists, pathologists, and hepatologists for over 130 years, yet clear evidence of its role in hepatic injury and fibrosis only emerged following the refinement of methods for its isolation and characterization.
Abstract: The hepatic stellate cell has surprised and engaged physiologists, pathologists, and hepatologists for over 130 years, yet clear evidence of its role in hepatic injury and fibrosis only emerged following the refinement of methods for its isolation and characterization. The paradigm in liver injury of activation of quiescent vitamin A-rich stellate cells into proliferative, contractile, and fibrogenic myofibroblasts has launched an era of astonishing progress in understanding the mechanistic basis of hepatic fibrosis progression and regression. But this simple paradigm has now yielded to a remarkably broad appreciation of the cell's functions not only in liver injury, but also in hepatic development, regeneration, xenobiotic responses, intermediary metabolism, and immunoregulation. Among the most exciting prospects is that stellate cells are essential for hepatic progenitor cell amplification and differentiation. Equally intriguing is the remarkable plasticity of stellate cells, not only in their variable intermediate filament phenotype, but also in their functions. Stellate cells can be viewed as the nexus in a complex sinusoidal milieu that requires tightly regulated autocrine and paracrine cross-talk, rapid responses to evolving extracellular matrix content, and exquisite responsiveness to the metabolic needs imposed by liver growth and repair. Moreover, roles vital to systemic homeostasis include their storage and mobilization of retinoids, their emerging capacity for antigen presentation and induction of tolerance, as well as their emerging relationship to bone marrow-derived cells. As interest in this cell type intensifies, more surprises and mysteries are sure to unfold that will ultimately benefit our understanding of liver physiology and the diagnosis and treatment of liver disease.

2,419 citations