scispace - formally typeset
Search or ask a question
Author

Gichang Lee

Bio: Gichang Lee is an academic researcher. The author has contributed to research in topics: Tokenization (data security). The author has an hindex of 1, co-authored 2 publications receiving 5 citations.

Papers
More filters
Posted Content
TL;DR: HyperCLOVA as discussed by the authors is a Korean variant of 82B GPT-3 trained on a Korean-centric corpus of 560B tokens, which shows state-of-the-art zero-shot and few-shot learning performances on various downstream tasks in Korean.
Abstract: GPT-3 shows remarkable in-context learning ability of large-scale language models (LMs) trained on hundreds of billion scale data. Here we address some remaining issues less reported by the GPT-3 paper, such as a non-English LM, the performances of different sized models, and the effect of recently introduced prompt optimization on in-context learning. To achieve this, we introduce HyperCLOVA, a Korean variant of 82B GPT-3 trained on a Korean-centric corpus of 560B tokens. Enhanced by our Korean-specific tokenization, HyperCLOVA with our training configuration shows state-of-the-art in-context zero-shot and few-shot learning performances on various downstream tasks in Korean. Also, we show the performance benefits of prompt-based learning and demonstrate how it can be integrated into the prompt engineering pipeline. Then we discuss the possibility of materializing the No Code AI paradigm by providing AI prototyping capabilities to non-experts of ML by introducing HyperCLOVA studio, an interactive prompt engineering interface. Lastly, we demonstrate the potential of our methods with three successful in-house applications.

6 citations

Proceedings Article
10 Sep 2021
TL;DR: HyperCLOVA as mentioned in this paper is a Korean variant of 82B GPT-3 trained on a Korean-centric corpus of 560B tokens, which shows state-of-the-art zero-shot and few-shot learning performances on various downstream tasks in Korean.
Abstract: GPT-3 shows remarkable in-context learning ability of large-scale language models (LMs) trained on hundreds of billion scale data. Here we address some remaining issues less reported by the GPT-3 paper, such as a non-English LM, the performances of different sized models, and the effect of recently introduced prompt optimization on in-context learning. To achieve this, we introduce HyperCLOVA, a Korean variant of 82B GPT-3 trained on a Korean-centric corpus of 560B tokens. Enhanced by our Korean-specific tokenization, HyperCLOVA with our training configuration shows state-of-the-art in-context zero-shot and few-shot learning performances on various downstream tasks in Korean. Also, we show the performance benefits of prompt-based learning and demonstrate how it can be integrated into the prompt engineering pipeline. Then we discuss the possibility of materializing the No Code AI paradigm by providing AI prototyping capabilities to non-experts of ML by introducing HyperCLOVA studio, an interactive prompt engineering interface. Lastly, we demonstrate the potential of our methods with three successful in-house applications.

Cited by
More filters
Posted Content
TL;DR: This article developed a system for easily mapping general natural language tasks into a human-readable prompted form, and fine-tuned a pretrained encoder-decoder model on this multitask mixture covering a wide variety of tasks.
Abstract: Large language models have recently been shown to attain reasonable zero-shot generalization on a diverse set of tasks. It has been hypothesized that this is a consequence of implicit multitask learning in language model training. Can zero-shot generalization instead be directly induced by explicit multitask learning? To test this question at scale, we develop a system for easily mapping general natural language tasks into a human-readable prompted form. We convert a large set of supervised datasets, each with multiple prompts using varying natural language. These prompted datasets allow for benchmarking the ability of a model to perform completely unseen tasks specified in natural language. We fine-tune a pretrained encoder-decoder model on this multitask mixture covering a wide variety of tasks. The model attains strong zero-shot performance on several standard datasets, often outperforming models 16x its size. Further, our approach attains strong performance on a subset of tasks from the BIG-Bench benchmark, outperforming models 6x its size. All prompts and trained models are available at github.com/bigscience-workshop/promptsource/.

7 citations

Proceedings Article
25 Apr 2022
TL;DR: The authors developed a system for easily mapping general natural language tasks into a human-readable prompted form, and fine-tuned a pretrained encoder-decoder model on this multitask mixture covering a wide variety of tasks.
Abstract: Large language models have recently been shown to attain reasonable zero-shot generalization on a diverse set of tasks. It has been hypothesized that this is a consequence of implicit multitask learning in language model training. Can zero-shot generalization instead be directly induced by explicit multitask learning? To test this question at scale, we develop a system for easily mapping general natural language tasks into a human-readable prompted form. We convert a large set of supervised datasets, each with multiple prompts using varying natural language. These prompted datasets allow for benchmarking the ability of a model to perform completely unseen tasks specified in natural language. We fine-tune a pretrained encoder-decoder model on this multitask mixture covering a wide variety of tasks. The model attains strong zero-shot performance on several standard datasets, often outperforming models 16x its size. Further, our approach attains strong performance on a subset of tasks from the BIG-Bench benchmark, outperforming models 6x its size. All prompts and trained models are available at github.com/bigscience-workshop/promptsource/.

4 citations

Posted Content
TL;DR: P-Tuning v2 as mentioned in this paper is a version of prefix-tuning optimized and adapted for NLU, which matches the performance of fine tuning while having only 0.1\%-3\% tuned parameters.
Abstract: Prompt tuning, which only tunes continuous prompts with a frozen language model, substantially reduces per-task storage and memory usage at training. However, in the context of NLU, prior work reveals that prompt tuning does not perform well for normal-sized pre-trained models. We also find that existing methods of prompt tuning cannot handle hard sequence tagging tasks, indicating a lack of universality. We present a novel empirical finding that properly optimized prompt tuning can be universally effective across a wide range of model scales and NLU tasks. It matches the performance of fine-tuning while having only 0.1\%-3\% tuned parameters. Our method P-Tuning v2 is not a new method, but a version of prefix-tuning \cite{li2021prefix} optimized and adapted for NLU. Given the universality and simplicity of P-Tuning v2, we believe it can serve as an alternative to fine-tuning and a strong baseline for future research.

1 citations

Posted Content
TL;DR: Zhang et al. as mentioned in this paper used a pretrained language model (PLM) that leverages textual attributes of web-scale products to make intent-based product collections, and trained a BERT with triplet loss by setting an intent sentence to an anchor and corresponding products to positive examples.
Abstract: Building a shopping product collection has been primarily a human job. With the manual efforts of craftsmanship, experts collect related but diverse products with common shopping intent that are effective when displayed together, e.g., backpacks, laptop bags, and messenger bags for freshman bag gifts. Automatically constructing a collection requires an ML system to learn a complex relationship between the customer's intent and the product's attributes. However, there have been challenging points, such as 1) long and complicated intent sentences, 2) rich and diverse product attributes, and 3) a huge semantic gap between them, making the problem difficult. In this paper, we use a pretrained language model (PLM) that leverages textual attributes of web-scale products to make intent-based product collections. Specifically, we train a BERT with triplet loss by setting an intent sentence to an anchor and corresponding products to positive examples. Also, we improve the performance of the model by search-based negative sampling and category-wise positive pair augmentation. Our model significantly outperforms the search-based baseline model for intent-based product matching in offline evaluations. Furthermore, online experimental results on our e-commerce platform show that the PLM-based method can construct collections of products with increased CTR, CVR, and order-diversity compared to expert-crafted collections.
Posted Content
TL;DR: PAGnol-XL as discussed by the authors is the largest pre-trained model for the French language and achieves state-of-the-art performance in the abstract summarization task.
Abstract: Access to large pre-trained models of varied architectures, in many different languages, is central to the democratization of NLP. We introduce PAGnol, a collection of French GPT models. Using scaling laws, we efficiently train PAGnol-XL (1.5B parameters) with the same computational budget as CamemBERT, a model 13 times smaller. PAGnol-XL is the largest model trained to date for the French language. We plan to train increasingly large and performing versions of PAGnol, exploring the capabilities of French extreme-scale models. For this first release, we focus on the pre-training and scaling calculations underlining PAGnol. We fit a scaling law for compute for the French language, and compare it with its English counterpart. We find the pre-training dataset significantly conditions the quality of the outputs, with common datasets such as OSCAR leading to low-quality offensive text. We evaluate our models on discriminative and generative tasks in French, comparing to other state-of-the-art French and multilingual models, and reaching the state of the art in the abstract summarization task. Our research was conducted on the public GENCI Jean Zay supercomputer, and our models up to the Large are made publicly available.