scispace - formally typeset
Search or ask a question
Author

Gijs van Erven

Bio: Gijs van Erven is an academic researcher from Wageningen University and Research Centre. The author has contributed to research in topics: Lignin & Chemistry. The author has an hindex of 10, co-authored 18 publications receiving 195 citations.
Topics: Lignin, Chemistry, Medicine, Biorefinery, Laccase

Papers
More filters
Journal ArticleDOI
TL;DR: The robust method proves to be a promising alternative for the high-throughput quantification of lignin in milled biomass samples directly and simultaneously provides a direct insight into the structural features oflignin.
Abstract: Understanding mechanisms underlying plant biomass recalcitrance at molecular level can only be achieved by accurate analyses of both content and structural features of the molecules involved. Current quantification of lignin is, however, majorly based on unspecific gravimetric analysis after sulphuric acid hydrolysis. Hence, our research aimed at specific lignin quantification with concurrent characterization of its structural features. Hereto, for the first time, a polymeric 13C lignin was used as internal standard (IS) for lignin quantification via analytical pyrolysis coupled to gas chromatography with mass-spectrometric detection in selected ion monitoring mode (py-GC-SIM-MS). In addition, relative response factors (RRFs) for the various pyrolysis products obtained were determined and applied. First, 12C and 13C lignin were isolated from non-labelled and uniformly 13C labelled wheat straw, respectively, and characterized by heteronuclear single quantum coherence (HSQC) nuclear magnetic resonance (NMR)...

60 citations

Journal ArticleDOI
TL;DR: The results suggest that SF5 and SF7 FAEs are promising enzymes for biorefinery applications, where a complete degradation of the plant cell wall is desired, and substantiate the previous SF classification as a useful tool to predict the substrate specificity of FAEs.
Abstract: Feruloyl esterases (FAEs) have an important role in the enzymatic conversion of lignocellulosic biomass by decoupling plant cell wall polysaccharides and lignin. Moreover, FAEs release anti-oxidative hydroxycinnamic acids (HCAs) from biomass. As a plethora of FAE candidates were found in fungal genomes, FAE classification related to substrate specificity is an indispensability for selection of most suitable candidates. Hence, linking distinct substrate specificities to a FAE classification, such as the recently classified FAE subfamilies (SF), is a promising approach to improve the application of these enzymes for a variety of industrial applications. In total, 14 FAEs that are classified members of SF1, 5, 6, 7, 9, and 13 were tested in this research. All FAEs were investigated for their activity toward a variety of substrates: synthetic model substrates, plant cell wall-derived substrates, including lignin, and natural substrates. Released HCAs were determined using reverse phase-ultra high performance liquid chromatography coupled to UV detection and mass spectrometry. Based on this study, FAEs of SF5 and SF7 showed the highest release of FA, pCA, and diFAs over the range of substrates, while FAEs of SF6 were comparable but less pronounced for diFAs release. These results suggest that SF5 and SF7 FAEs are promising enzymes for biorefinery applications, like the production of biofuels, where a complete degradation of the plant cell wall is desired. In contrast, SF6 FAEs might be of interest for industrial applications that require a high release of only FA and pCA, which are needed as precursors for the production of biochemicals. In contrast, FAEs of SF1, 9 and 13 showed an overall low release of HCAs from plant cell wall-derived and natural substrates. The obtained results substantiate the previous SF classification as a useful tool to predict the substrate specificity of FAEs, which eases the selection of FAE candidates for industrial applications.

34 citations

Journal ArticleDOI
TL;DR: This research is the first to identify that Cs degrades the major β-O-4 ether linkage in grass lignin mainly via Cβ–O–aryl cleavage, while Cα–Cβ cleavage of inter-unit linkages predominated for Le.
Abstract: The white-rot fungi Ceriporiopsis subvermispora (Cs), Pleurotus eryngii (Pe), and Lentinula edodes (Le) have been shown to be high-potential species for selective delignification of plant biomass. This delignification improves polysaccharide degradability, which currently limits the efficient lignocellulose conversion into biochemicals, biofuels, and animal feed. Since selectivity and time efficiency of fungal delignification still need optimization, detailed understanding of the underlying mechanisms at molecular level is required. The recently developed methodologies for lignin quantification and characterization now allow for the in-depth mapping of fungal modification and degradation of lignin and, thereby, enable resolving underlying mechanisms. Wheat straw treated by two strains of Cs (Cs1 and Cs12), Pe (Pe3 and Pe6) and Le (Le8 and Le10) was characterized using semi-quantitative py-GC–MS during fungal growth (1, 3, and 7 weeks). The remaining lignin after 7 weeks was quantified and characterized using 13C lignin internal standard based py-GC–MS and whole cell wall HSQC NMR. Strains of the same species showed similar patterns of lignin removal and degradation. Cs and Le outperformed Pe in terms of extent and selectivity of delignification (Cs ≥ Le >> Pe). The highest lignin removal [66% (w/w); Cs1] was obtained after 7 weeks, without extensive carbohydrate degradation (factor 3 increased carbohydrate-to-lignin ratio). Furthermore, though after treatment with Cs and Le comparable amounts of lignin remained, the structure of the residual lignin vastly differed. For example, Cα-oxidized substructures accumulated in Cs treated lignin up to 24% of the total aromatic lignin, a factor two higher than in Le-treated lignin. Contrarily, ferulic acid substructures were preferentially targeted by Le (and Pe). Interestingly, Pe-spent lignin was specifically depleted of tricin (40% reduction). The overall subunit composition (H:G:S) was not affected by fungal treatment. Cs and Le are both able to effectively and selectively delignify wheat straw, though the underlying mechanisms are fundamentally different. We are the first to identify that Cs degrades the major β-O-4 ether linkage in grass lignin mainly via Cβ–O–aryl cleavage, while Cα–Cβ cleavage of inter-unit linkages predominated for Le. Our research provides a new insight on how fungi degrade lignin, which contributes to further optimizing the biological upgrading of lignocellulose.

30 citations

Journal ArticleDOI
TL;DR: Lignin degradation by white-rot fungi is an essential step in terrestrial carbon cycling and has great potential for biotechnological applications.
Abstract: Lignin degradation by white-rot fungi is an essential step in terrestrial carbon cycling and has great potential for biotechnological applications. Selective white-rot fungi have been recognized fo...

30 citations

Journal ArticleDOI
TL;DR: For the first time, it is shown that degradation of native lignin in the plant cell wall matrix by LMS occurs via both Cα–Cβ cleavage and ether cleavage of β-O-4′ aryl ethers, and that the latter primarily occurs via Cleavage of theβ-O bond.

24 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The known cases of secondary thickening in recent Pteridophyta have been brought together by HILL23 in a useful resume and Botrychium and Ophioglossum, which lacks a definite layer, are described.
Abstract: Secondary thickening in pteridophytes.-The known cases of secondary thickening in recent Pteridophyta have been brought together by HILL23 in a useful resume. After stating the criteria for secondary growth, Botrychium, which has a distinct cambium, and Ophioglossum, which lacks a definite layer, are described, followed by Angiopteris and Marattia, in which a cambium forms a few xylem elements. CORMACK'S observations on the secondary wood in the nodes of Equisetum are cited, though no reference is made to the cambium in the young cone as reported by J]FFREY.24 The other cases of secondary growth include Psilotum, Selaginella spinulosa, and several species of Isoetes, especially I. hystrix, which may show a cambium outside the vascular cylinder.-M. A.

578 citations

Journal ArticleDOI
TL;DR: This protocol describes a quantitative 31P NMR spectroscopy approach for the analysis and determination of hydroxyl groups on biorefinery resources such as lignins and tannins.
Abstract: The analysis of chemical structural characteristics of biorefinery product streams (such as lignin and tannin) has advanced substantially over the past decade, with traditional wet-chemical techniques being replaced or supplemented by NMR methodologies. Quantitative 31P NMR spectroscopy is a promising technique for the analysis of hydroxyl groups because of its unique characterization capability and broad potential applicability across the biorefinery research community. This protocol describes procedures for (i) the preparation/solubilization of lignin and tannin, (ii) the phosphitylation of their hydroxyl groups, (iii) NMR acquisition details, and (iv) the ensuing data analyses and means to precisely calculate the content of the different types of hydroxyl groups. Compared with traditional wet-chemical techniques, the technique of quantitative 31P NMR spectroscopy offers unique advantages in measuring hydroxyl groups in a single spectrum with high signal resolution. The method provides complete quantitative information about the hydroxyl groups with small amounts of sample (~30 mg) within a relatively short experimental time (~30–120 min). This protocol describes a quantitative 31P NMR spectroscopy approach for the analysis and determination of hydroxyl groups on biorefinery resources such as lignins and tannins.

211 citations

Journal ArticleDOI
TL;DR: In this paper, the main processing and chemical synthesis routes available for the fabrication of lignin-based smart materials, and focus on their use as sensors, biomedical systems, and shape-programmable materials.
Abstract: Biomass-derived materials are green alternatives to synthetic plastics and other fossil-based materials Lignin, an aromatic plant polymer, is one of the most appealing renewable material precursors for smart materials capable of responding to different stimuli Here we review lignin-based smart materials, a research field that has seen a rapid growth during the last five years We describe the main processing and chemical synthesis routes available for the fabrication of lignin-based smart materials, and focus on their use as sensors, biomedical systems, and shape-programmable materials In addition to benchmarking their performance to the state of the art fossil counterparts, we identify challenges and future opportunities for the development of lignin-based smart materials towards new high-performance applications

110 citations

Journal ArticleDOI
TL;DR: The observed differences between the response stem and root to bending highlight how hormonal signaling is highly organ-dependent and an antagonistic interaction of auxins and different cytokinin forms/conjugates seems to regulate critical aspects of RW formation/development in stem androot to facilitate upward/downward organ bending.
Abstract: Reaction wood (RW) formation is an innate physiological response of woody plants to counteract mechanical constraints in nature, reinforce structure and redirect growth toward the vertical direction. Differences and/or similarities between stem and root response to mechanical constraints remain almost unknown especially in relation to phytohormones distribution and RW characteristics. Thus, Populus nigra stem and root subjected to static non-destructive mid-term bending treatment were analyzed. The distribution of tension and compression forces was firstly modeled along the main bent stem and root axis; then, anatomical features, chemical composition, and a complete auxin and cytokinin metabolite profiles of the stretched convex and compressed concave side of three different bent stem and root sectors were analyzed. The results showed that in bent stems RW was produced on the upper stretched convex side whereas in bent roots it was produced on the lower compressed concave side. Anatomical features and chemical analysis showed that bent stem RW was characterized by a low number of vessel, poor lignification, and high carbohydrate, and thus gelatinous layer in fiber cell wall. Conversely, in bent root, RW was characterized by high vessel number and area, without any significant variation in carbohydrate and lignin content. An antagonistic interaction of auxins and different cytokinin forms/conjugates seems to regulate critical aspects of RW formation/development in stem and root to facilitate upward/downward organ bending. The observed differences between the response stem and root to bending highlight how hormonal signaling is highly organ-dependent.

107 citations

Journal ArticleDOI
TL;DR: In this article, the current state of lignocellulose pretreatment technologies was comprehensively reviewed, and the advances in bioenergy production from pretreated lignosulose was described, with particular attention to key challenges involved.

100 citations