scispace - formally typeset
Search or ask a question
Author

Gil Amitai

Bio: Gil Amitai is an academic researcher from Weizmann Institute of Science. The author has contributed to research in topics: Biology & CRISPR. The author has an hindex of 21, co-authored 36 publications receiving 3346 citations.
Topics: Biology, CRISPR, Intein, Medicine, DNA

Papers
More filters
Journal ArticleDOI
02 Mar 2018-Science
TL;DR: This study comprehensively identify and experimentally verify new defense systems based on their enrichment within defense islands in an attempt to systematically map the arsenal of defense tools that are at the disposal of microbes in their fight against phages.
Abstract: The arms race between bacteria and phages led to the development of sophisticated antiphage defense systems, including CRISPR-Cas and restriction-modification systems. Evidence suggests that unknown defense systems are located in “defense islands” in microbial genomes. We comprehensively characterized the bacterial defensive arsenal by examining gene families that are clustered next to known defense genes in prokaryotic genomes. Candidate defense systems were systematically engineered and validated in model bacteria for their antiphage activities. We report nine previously unknown antiphage systems and one antiplasmid system that are widespread in microbes and strongly protect against foreign invaders. These include systems that adopted components of the bacterial flagella and condensin complexes. Our data also suggest a common, ancient ancestry of innate immunity components shared between animals, plants, and bacteria.

650 citations

Journal ArticleDOI
TL;DR: This work transformed protein structures into residue interaction graphs (RIGs), where amino acid residues are graph nodes and their interactions with each other are the graph edges, and found that active site, ligand-binding and evolutionary conserved residues, typically have high closeness values.

463 citations

Journal ArticleDOI
26 Jan 2017-Nature
TL;DR: It is shown that viruses (phages) of the SPbeta group use a small-molecule communication system to coordinate lysis–lysogeny decisions, and that different phages encode different versions of the communication peptide, demonstrating a phage-specific peptide communication code for lysogenY decisions.
Abstract: Temperate viruses can become dormant in their host cells, a process called lysogeny. In every infection, such viruses decide between the lytic and the lysogenic cycles, that is, whether to replicate and lyse their host or to lysogenize and keep the host viable. Here we show that viruses (phages) of the SPbeta group use a small-molecule communication system to coordinate lysis-lysogeny decisions. During infection of its Bacillus host cell, the phage produces a six amino-acids-long communication peptide that is released into the medium. In subsequent infections, progeny phages measure the concentration of this peptide and lysogenize if the concentration is sufficiently high. We found that different phages encode different versions of the communication peptide, demonstrating a phage-specific peptide communication code for lysogeny decisions. We term this communication system the 'arbitrium' system, and further show that it is encoded by three phage genes: aimP, which produces the peptide; aimR, the intracellular peptide receptor; and aimX, a negative regulator of lysogeny. The arbitrium system enables a descendant phage to 'communicate' with its predecessors, that is, to estimate the amount of recent previous infections and hence decide whether to employ the lytic or lysogenic cycle.

421 citations

Journal ArticleDOI
Adi Stern1, Leeat Keren1, Omri Wurtzel1, Gil Amitai1, Rotem Sorek1 
TL;DR: It is proposed that accidental incorporation of self nucleic acids by CRISPR can incur an autoimmune fitness cost, and this could explain the abundance of degradedCRISPR systems across prokaryotes.

362 citations

Journal ArticleDOI
23 Apr 2015-Nature
TL;DR: The results suggest that, in Escherichia coli, acquisition of new spacers largely depends on RecBCD-mediated processing of double-stranded DNA breaks occurring primarily at replication forks, and that the preference for foreign DNA is achieved through the higher density of Chi sites on the self chromosome, in combination with the higher number of forks on the foreign DNA.
Abstract: CRISPR-Cas (clustered, regularly interspaced short palindromic repeats coupled with CRISPR-associated proteins) is a bacterial immunity system that protects against invading phages or plasmids. In the process of CRISPR adaptation, short pieces of DNA ('spacers') are acquired from foreign elements and integrated into the CRISPR array. So far, it has remained a mystery how spacers are preferentially acquired from the foreign DNA while the self chromosome is avoided. Here we show that spacer acquisition is replication-dependent, and that DNA breaks formed at stalled replication forks promote spacer acquisition. Chromosomal hotspots of spacer acquisition were confined by Chi sites, which are sequence octamers highly enriched on the bacterial chromosome, suggesting that these sites limit spacer acquisition from self DNA. We further show that the avoidance of self is mediated by the RecBCD double-stranded DNA break repair complex. Our results suggest that, in Escherichia coli, acquisition of new spacers largely depends on RecBCD-mediated processing of double-stranded DNA breaks occurring primarily at replication forks, and that the preference for foreign DNA is achieved through the higher density of Chi sites on the self chromosome, in combination with the higher number of forks on the foreign DNA. This model explains the strong preference to acquire spacers both from high copy plasmids and from phages.

340 citations


Cited by
More filters
01 Jun 2012
TL;DR: SPAdes as mentioned in this paper is a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V-SC assembler and on popular assemblers Velvet and SoapDeNovo (for multicell data).
Abstract: The lion's share of bacteria in various environments cannot be cloned in the laboratory and thus cannot be sequenced using existing technologies. A major goal of single-cell genomics is to complement gene-centric metagenomic data with whole-genome assemblies of uncultivated organisms. Assembly of single-cell data is challenging because of highly non-uniform read coverage as well as elevated levels of sequencing errors and chimeric reads. We describe SPAdes, a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V-SC assembler (specialized for single-cell data) and on popular assemblers Velvet and SoapDeNovo (for multicell data). SPAdes generates single-cell assemblies, providing information about genomes of uncultivatable bacteria that vastly exceeds what may be obtained via traditional metagenomics studies. SPAdes is available online ( http://bioinf.spbau.ru/spades ). It is distributed as open source software.

10,124 citations

Journal Article
TL;DR: FastTree as mentioned in this paper uses sequence profiles of internal nodes in the tree to implement neighbor-joining and uses heuristics to quickly identify candidate joins, then uses nearest-neighbor interchanges to reduce the length of the tree.
Abstract: Gene families are growing rapidly, but standard methods for inferring phylogenies do not scale to alignments with over 10,000 sequences. We present FastTree, a method for constructing large phylogenies and for estimating their reliability. Instead of storing a distance matrix, FastTree stores sequence profiles of internal nodes in the tree. FastTree uses these profiles to implement neighbor-joining and uses heuristics to quickly identify candidate joins. FastTree then uses nearest-neighbor interchanges to reduce the length of the tree. For an alignment with N sequences, L sites, and a different characters, a distance matrix requires O(N^2) space and O(N^2 L) time, but FastTree requires just O( NLa + N sqrt(N) ) memory and O( N sqrt(N) log(N) L a ) time. To estimate the tree's reliability, FastTree uses local bootstrapping, which gives another 100-fold speedup over a distance matrix. For example, FastTree computed a tree and support values for 158,022 distinct 16S ribosomal RNAs in 17 hours and 2.4 gigabytes of memory. Just computing pairwise Jukes-Cantor distances and storing them, without inferring a tree or bootstrapping, would require 17 hours and 50 gigabytes of memory. In simulations, FastTree was slightly more accurate than neighbor joining, BIONJ, or FastME; on genuine alignments, FastTree's topologies had higher likelihoods. FastTree is available at http://microbesonline.org/fasttree.

2,436 citations

Journal ArticleDOI
TL;DR: This review aims to provide an in-depth mechanistic and structural understanding of Cas9-mediated RNA-guided DNA targeting and cleavage and provides a framework for rational engineering aimed at altering catalytic function, guide RNA specificity, and PAM requirements and reducing off-target activity for the development of Cas 9-based therapies against genetic diseases.
Abstract: Many bacterial clustered regularly interspaced short palindromic repeats (CRISPR)–CRISPR-associated (Cas) systems employ the dual RNA–guided DNA endonuclease Cas9 to defend against invading phages and conjugative plasmids by introducing site-specific double-stranded breaks in target DNA. Target recognition strictly requires the presence of a short protospacer adjacent motif (PAM) flanking the target site, and subsequent R-loop formation and strand scission are driven by complementary base pairing between the guide RNA and target DNA, Cas9–DNA interactions, and associated conformational changes. The use of CRISPR–Cas9 as an RNA-programmable DNA targeting and editing platform is simplified by a synthetic single-guide RNA (sgRNA) mimicking the natural dual trans-activating CRISPR RNA (tracrRNA)–CRISPR RNA (crRNA) structure. This review aims to provide an in-depth mechanistic and structural understanding of Cas9-mediated RNA-guided DNA targeting and cleavage. Molecular insights from biochemical and structural...

1,158 citations

Journal ArticleDOI
TL;DR: The hypothesis that promiscuous enzymatic activities serve as evolutionary starting points and highlight the unique evolutionary features ofpromiscuous enzyme functions are addressed.
Abstract: Many, if not most, enzymes can promiscuously catalyze reactions, or act on substrates, other than those for which they evolved. Here, we discuss the structural, mechanistic, and evolutionary implications of this manifestation of infidelity of molecular recognition. We define promiscuity and related phenomena and also address their generality and physiological implications. We discuss the mechanistic enzymology of promiscuity—how enzymes, which generally exert exquisite specificity, catalyze other, and sometimes barely related, reactions. Finally, we address the hypothesis that promiscuous enzymatic activities serve as evolutionary starting points and highlight the unique evolutionary features of promiscuous enzyme functions.

1,153 citations

PatentDOI
03 Mar 2016-Nature
TL;DR: The use of CRISPR-Cas9 nucleases with altered and improved PAM specificities has been explored in genomic engineering, epigenomic engineering, and genome targeting as mentioned in this paper.
Abstract: Engineered CRISPR-Cas9 nucleases with altered and improved PAM specificities and their use in genomic engineering, epigenomic engineering, and genome targeting.

1,131 citations