scispace - formally typeset
Search or ask a question
Author

Gilbert A. Esquerdo

Bio: Gilbert A. Esquerdo is an academic researcher from Harvard University. The author has contributed to research in topics: Planet & Exoplanet. The author has an hindex of 54, co-authored 191 publications receiving 13563 citations. Previous affiliations of Gilbert A. Esquerdo include Planetary Science Institute & CFA Institute.


Papers
More filters
Journal ArticleDOI
Natalie M. Batalha1, Natalie M. Batalha2, Jason F. Rowe1, Stephen T. Bryson1, Thomas Barclay1, Christopher J. Burke1, Douglas A. Caldwell1, Jessie L. Christiansen1, Fergal Mullally1, Susan E. Thompson1, Timothy M. Brown3, Andrea K. Dupree4, Daniel C. Fabrycky5, Eric B. Ford6, Jonathan J. Fortney5, Ronald L. Gilliland7, Howard Isaacson8, David W. Latham4, Geoffrey W. Marcy8, Samuel N. Quinn9, Samuel N. Quinn4, Darin Ragozzine4, Avi Shporer3, William J. Borucki1, David R. Ciardi10, Thomas N. Gautier10, Michael R. Haas1, Jon M. Jenkins1, David G. Koch1, Jack J. Lissauer1, William Rapin1, Gibor Basri8, Alan P. Boss11, Lars A. Buchhave12, Joshua A. Carter4, David Charbonneau4, Joergen Christensen-Dalsgaard13, Bruce D. Clarke10, William D. Cochran14, Brice-Olivier Demory15, Jean-Michel Desert4, Edna DeVore16, Laurance R. Doyle16, Gilbert A. Esquerdo4, Mark E. Everett, Francois Fressin4, John C. Geary4, Forrest R. Girouard1, Alan Gould17, Jennifer R. Hall1, Matthew J. Holman4, Andrew W. Howard8, Steve B. Howell1, Khadeejah A. Ibrahim1, Karen Kinemuchi1, Hans Kjeldsen13, Todd C. Klaus1, Jie Li1, Philip W. Lucas18, Søren Meibom4, Robert L. Morris1, Andrej Prsa19, Elisa V. Quintana1, Dwight T. Sanderfer1, Dimitar Sasselov4, Shawn Seader1, Jeffrey C. Smith1, Jason H. Steffen20, Martin Still1, Martin C. Stumpe1, Jill Tarter16, Peter Tenenbaum1, Guillermo Torres4, Joseph D. Twicken1, Kamal Uddin1, Jeffrey Van Cleve1, Lucianne M. Walkowicz21, William F. Welsh22 
TL;DR: In this paper, the authors verified nearly 5000 periodic transit-like signals against astrophysical and instrumental false positives yielding 1108 viable new transiting planet candidates, bringing the total count up to over 2300.
Abstract: New transiting planet candidates are identified in 16 months (2009 May-2010 September) of data from the Kepler spacecraft. Nearly 5000 periodic transit-like signals are vetted against astrophysical and instrumental false positives yielding 1108 viable new planet candidates, bringing the total count up to over 2300. Improved vetting metrics are employed, contributing to higher catalog reliability. Most notable is the noise-weighted robust averaging of multi-quarter photo-center offsets derived from difference image analysis that identifies likely background eclipsing binaries. Twenty-two months of photometry are used for the purpose of characterizing each of the candidates. Ephemerides (transit epoch, T_0, and orbital period, P) are tabulated as well as the products of light curve modeling: reduced radius (R_P/R_★), reduced semimajor axis (d/R_★), and impact parameter (b). The largest fractional increases are seen for the smallest planet candidates (201% for candidates smaller than 2 R_⊕ compared to 53% for candidates larger than 2 R_⊕) and those at longer orbital periods (124% for candidates outside of 50 day orbits versus 86% for candidates inside of 50 day orbits). The gains are larger than expected from increasing the observing window from 13 months (Quarters 1-5) to 16 months (Quarters 1-6) even in regions of parameter space where one would have expected the previous catalogs to be complete. Analyses of planet frequencies based on previous catalogs will be affected by such incompleteness. The fraction of all planet candidate host stars with multiple candidates has grown from 17% to 20%, and the paucity of short-period giant planets in multiple systems is still evident. The progression toward smaller planets at longer orbital periods with each new catalog release suggests that Earth-size planets in the habitable zone are forthcoming if, indeed, such planets are abundant.

1,271 citations

Journal ArticleDOI
TL;DR: In this paper, the authors used the noise-weighted robust averaging of multi-quarter photo-center offsets derived from difference image analysis, which identifies likely background eclipsing binaries.
Abstract: New transiting planet candidates are identified in sixteen months (May 2009 - September 2010) of data from the Kepler spacecraft. Nearly five thousand periodic transit-like signals are vetted against astrophysical and instrumental false positives yielding 1,091 viable new planet candidates, bringing the total count up to over 2,300. Improved vetting metrics are employed, contributing to higher catalog reliability. Most notable is the noise-weighted robust averaging of multi-quarter photo-center offsets derived from difference image analysis which identifies likely background eclipsing binaries. Twenty-two months of photometry are used for the purpose of characterizing each of the new candidates. Ephemerides (transit epoch, T_0, and orbital period, P) are tabulated as well as the products of light curve modeling: reduced radius (Rp/R*), reduced semi-major axis (d/R*), and impact parameter (b). The largest fractional increases are seen for the smallest planet candidates (197% for candidates smaller than 2Re compared to 52% for candidates larger than 2Re) and those at longer orbital periods (123% for candidates outside of 50-day orbits versus 85% for candidates inside of 50-day orbits). The gains are larger than expected from increasing the observing window from thirteen months (Quarter 1-- Quarter 5) to sixteen months (Quarter 1 -- Quarter 6). This demonstrates the benefit of continued development of pipeline analysis software. The fraction of all host stars with multiple candidates has grown from 17% to 20%, and the paucity of short-period giant planets in multiple systems is still evident. The progression toward smaller planets at longer orbital periods with each new catalog release suggests that Earth-size planets in the Habitable Zone are forthcoming if, indeed, such planets are abundant.

1,162 citations

Journal ArticleDOI
TL;DR: In this paper, the authors describe the photometric calibration and stellar classification methods used by the Stellar Classification Project to produce the Kepler Input Catalog (KIC) and derive atmospheric extinction corrections from hourly observations of secondary standard fields within the Kepler field of view.
Abstract: We describe the photometric calibration and stellar classification methods used by the Stellar Classification Project to produce the Kepler Input Catalog (KIC). The KIC is a catalog containing photometric and physical data for sources in the Kepler mission field of view; it is used by the mission to select optimal targets. Four of the visible-light (g, r, i, z) magnitudes used in the KIC are tied to Sloan Digital Sky Survey magnitudes; the fifth (D51) is an AB magnitude calibrated to be consistent with Castelli & Kurucz (CK) model atmosphere fluxes. We derived atmospheric extinction corrections from hourly observations of secondary standard fields within the Kepler field of view. For these filters and extinction estimates, repeatability of absolute photometry for stars brighter than magnitude 15 is typically 2%. We estimated stellar parameters {T eff, log (g), log (Z), E B – V } using Bayesian posterior probability maximization to match observed colors to CK stellar atmosphere models. We applied Bayesian priors describing the distribution of solar-neighborhood stars in the color-magnitude diagram, in log (Z), and in height above the galactic plane. Several comparisons with samples of stars classified by other means indicate that for 4500 K ≤T eff ≤ 6500 K, our classifications are reliable within about ±200 K and 0.4 dex in log (g) for dwarfs, with somewhat larger log (g) uncertainties for giants. It is difficult to assess the reliability of our log (Z) estimates, but there is reason to suspect that it is poor, particularly at extreme T eff. Comparisons between the CK models and observed colors are generally satisfactory with some exceptions, notably for stars cooler than 4500 K. Of great importance for the Kepler mission, for T eff ≤ 5400 K, comparison with asteroseismic results shows that the distinction between main-sequence stars and giants is reliable with about 98% confidence. Larger errors in log (g) occur for warmer stars, for which our filter set provides inadequate gravity diagnostics. The KIC is available through the MAST data archive.

952 citations

Journal ArticleDOI
16 Sep 2011-Science
TL;DR: The detection of a planet whose orbit surrounds a pair of low-mass stars, comparable to Saturn in mass and size and on a nearly circular 229-day orbit around its two parent stars, suggests that the planet formed within a circumbinary disk.
Abstract: We report the detection of a planet whose orbit surrounds a pair of low-mass stars. Data from the Kepler spacecraft reveal transits of the planet across both stars, in addition to the mutual eclipses of the stars, giving precise constraints on the absolute dimensions of all three bodies. The planet is comparable to Saturn in mass and size and is on a nearly circular 229-day orbit around its two parent stars. The eclipsing stars are 20 and 69% as massive as the Sun and have an eccentric 41-day orbit. The motions of all three bodies are confined to within 0.5° of a single plane, suggesting that the planet formed within a circumbinary disk.

797 citations

Journal ArticleDOI
21 Jun 2012-Nature
TL;DR: Spectroscopic metallicities of the host stars of 226 small exoplanet candidates discovered by NASA's Kepler mission are reported, finding that planets with radii less than four Earth radii form around host stars with a wide range of metallicities (but on average a metallicity close to that of the Sun), whereas large planets preferentially form around stars with higher metallicities.
Abstract: The abundance of heavy elements (metallicity) in the photospheres of stars similar to the Sun provides a 'fossil' record of the chemical composition of the initial protoplanetary disk. Metal-rich stars are much more likely to harbour gas giant planets(1-4), supporting the model that planets form by accumulation of dust and ice particles(5). Recent ground-based surveys suggest that this correlation is weakened for Neptunian-sized planets(4,6-9). However, how the relationship between size and metallicity extends into the regime of terrestrial-sized exoplanets is unknown. Here we report spectroscopic metallicities of the host stars of 226 small exoplanet candidates discovered by NASA's Kepler mission(10), including objects that are comparable in size to the terrestrial planets in the Solar System. We find that planets with radii less than four Earth radii form around host stars with a wide range of metallicities (but on average a metallicity close to that of the Sun), whereas large planets preferentially form around stars with higher metallicities. This observation suggests that terrestrial planets may be widespread in the disk of the Galaxy, with no special requirement of enhanced metallicity for their formation.

743 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors measured the difference between the measured and predicted colors of a star, as derived from stellar parameters from the Sloan Extension for Galactic Understanding and Exploration Stellar Parameter Pipeline, and achieved uncertainties of 56, 34, 25, and 29 mmag in the colors u − g, g − r, r − i, and i − z, per star.
Abstract: We present measurements of dust reddening using the colors of stars with spectra in the Sloan Digital Sky Survey. We measure reddening as the difference between the measured and predicted colors of a star, as derived from stellar parameters from the Sloan Extension for Galactic Understanding and Exploration Stellar Parameter Pipeline. We achieve uncertainties of 56, 34, 25, and 29 mmag in the colors u – g, g – r, r – i, and i – z, per star, though the uncertainty varies depending on the stellar type and the magnitude of the star. The spectrum-based reddening measurements confirm our earlier "blue tip" reddening measurements, finding reddening coefficients different by –3%, 1%, 1%, and 2% in u – g, g – r, r – i, and i – z from those found by the blue tip method, after removing a 4% normalization difference. These results prefer an RV = 3.1 Fitzpatrick reddening law to O'Donnell or Cardelli et al. reddening laws. We provide a table of conversion coefficients from the Schlegel et al. (SFD) maps of E(B – V) to extinction in 88 bandpasses for four values of RV , using this reddening law and the 14% recalibration of SFD first reported by Schlafly et al. and confirmed in this work.

6,643 citations

Journal Article
TL;DR: The first direct detection of gravitational waves and the first observation of a binary black hole merger were reported in this paper, with a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ.
Abstract: On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0×10(-21). It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ. The source lies at a luminosity distance of 410(-180)(+160) Mpc corresponding to a redshift z=0.09(-0.04)(+0.03). In the source frame, the initial black hole masses are 36(-4)(+5)M⊙ and 29(-4)(+4)M⊙, and the final black hole mass is 62(-4)(+4)M⊙, with 3.0(-0.5)(+0.5)M⊙c(2) radiated in gravitational waves. All uncertainties define 90% credible intervals. These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of gravitational waves and the first observation of a binary black hole merger.

4,375 citations

Journal ArticleDOI
19 Feb 2010-Science
TL;DR: The Kepler mission was designed to determine the frequency of Earth-sized planets in and near the habitable zone of Sun-like stars, which is the region where planetary temperatures are suitable for water to exist on a planet's surface.
Abstract: The Kepler mission was designed to determine the frequency of Earth-sized planets in and near the habitable zone of Sun-like stars. The habitable zone is the region where planetary temperatures are suitable for water to exist on a planet’s surface. During the first 6 weeks of observations, Kepler monitored 156,000 stars, and five new exoplanets with sizes between 0.37 and 1.6 Jupiter radii and orbital periods from 3.2 to 4.9 days were discovered. The density of the Neptune-sized Kepler-4b is similar to that of Neptune and GJ 436b, even though the irradiation level is 800,000 times higher. Kepler-7b is one of the lowest-density planets (~0.17 gram per cubic centimeter) yet detected. Kepler-5b, -6b, and -8b confirm the existence of planets with densities lower than those predicted for gas giant planets.

3,663 citations

Journal ArticleDOI
TL;DR: Modules for Experiments in Stellar Astrophysics (MESA) as discussed by the authors is an open source software package for modeling the evolution of stellar structures and composition. But it is not suitable for large-scale systems such as supernovae.
Abstract: We substantially update the capabilities of the open source software package Modules for Experiments in Stellar Astrophysics (MESA), and its one-dimensional stellar evolution module, MESA star. Improvements in MESA star's ability to model the evolution of giant planets now extends its applicability down to masses as low as one-tenth that of Jupiter. The dramatic improvement in asteroseismology enabled by the space-based Kepler and CoRoT missions motivates our full coupling of the ADIPLS adiabatic pulsation code with MESA star. This also motivates a numerical recasting of the Ledoux criterion that is more easily implemented when many nuclei are present at non-negligible abundances. This impacts the way in which MESA star calculates semi-convective and thermohaline mixing. We exhibit the evolution of 3-8 M ? stars through the end of core He burning, the onset of He thermal pulses, and arrival on the white dwarf cooling sequence. We implement diffusion of angular momentum and chemical abundances that enable calculations of rotating-star models, which we compare thoroughly with earlier work. We introduce a new treatment of radiation-dominated envelopes that allows the uninterrupted evolution of massive stars to core collapse. This enables the generation of new sets of supernovae, long gamma-ray burst, and pair-instability progenitor models. We substantially modify the way in which MESA star solves the fully coupled stellar structure and composition equations, and we show how this has improved the scaling of MESA's calculational speed on multi-core processors. Updates to the modules for equation of state, opacity, nuclear reaction rates, and atmospheric boundary conditions are also provided. We describe the MESA Software Development Kit that packages all the required components needed to form a unified, maintained, and well-validated build environment for MESA. We also highlight a few tools developed by the community for rapid visualization of MESA star results.

2,761 citations

Journal ArticleDOI
TL;DR: The third generation of the Sloan Digital Sky Survey (SDSS-III) took data from 2008 to 2014 using the original SDSS wide-field imager, the original and an upgraded multi-object fiber-fed optical spectrograph, a new near-infrared high-resolution spectrogram, and a novel optical interferometer.
Abstract: The third generation of the Sloan Digital Sky Survey (SDSS-III) took data from 2008 to 2014 using the original SDSS wide-field imager, the original and an upgraded multi-object fiber-fed optical spectrograph, a new near-infrared high-resolution spectrograph, and a novel optical interferometer. All the data from SDSS-III are now made public. In particular, this paper describes Data Release 11 (DR11) including all data acquired through 2013 July, and Data Release 12 (DR12) adding data acquired through 2014 July (including all data included in previous data releases), marking the end of SDSS-III observing. Relative to our previous public release (DR10), DR12 adds one million new spectra of galaxies and quasars from the Baryon Oscillation Spectroscopic Survey (BOSS) over an additional 3000 sq. deg of sky, more than triples the number of H-band spectra of stars as part of the Apache Point Observatory (APO) Galactic Evolution Experiment (APOGEE), and includes repeated accurate radial velocity measurements of 5500 stars from the Multi-Object APO Radial Velocity Exoplanet Large-area Survey (MARVELS). The APOGEE outputs now include measured abundances of 15 different elements for each star. In total, SDSS-III added 2350 sq. deg of ugriz imaging; 155,520 spectra of 138,099 stars as part of the Sloan Exploration of Galactic Understanding and Evolution 2 (SEGUE-2) survey; 2,497,484 BOSS spectra of 1,372,737 galaxies, 294,512 quasars, and 247,216 stars over 9376 sq. deg; 618,080 APOGEE spectra of 156,593 stars; and 197,040 MARVELS spectra of 5,513 stars. Since its first light in 1998, SDSS has imaged over 1/3 of the Celestial sphere in five bands and obtained over five million astronomical spectra.

2,471 citations