scispace - formally typeset
Search or ask a question
Author

Gilbert Collins

Bio: Gilbert Collins is an academic researcher from University of Rochester. The author has contributed to research in topics: National Ignition Facility & Shock (mechanics). The author has an hindex of 60, co-authored 322 publications receiving 10477 citations. Previous affiliations of Gilbert Collins include United States Department of Energy & Johns Hopkins University.


Papers
More filters
Journal ArticleDOI
TL;DR: A line-imaging velocity interferometer has been implemented at the OMEGA laser facility of the University of Rochester as mentioned in this paper, which is the primary diagnostic for a variety of experiments involving laser-driven shockwave propagation, including high pressure equation of state experiments, materials characterization experiments, shock characterization for Rayleigh-Taylor experiments, and shock timing experiments for inertial confinement fusion research.
Abstract: A line-imaging velocity interferometer has been implemented at the OMEGA laser facility of the Laboratory for Laser Energetics, University of Rochester. This instrument is the primary diagnostic for a variety of experiments involving laser-driven shock-wave propagation, including high-pressure equation of state experiments, materials characterization experiments, shock characterization for Rayleigh–Taylor experiments, and shock timing experiments for inertial confinement fusion research. Using a laser probe beam to illuminate a target, the instrument measures shock breakout times at temporal resolutions as low as 20 ps, and spatial resolution ∼4 μm. For velocity measurements the detection limit is <0.1 km/s, and velocities of interfaces, free surfaces, and shock fronts traveling through transparent media can be measured with accuracies ∼1% over the range from 4 km/s to greater than 50 km/s. Quantitative measurements of the optical reflectance of ionizing shock fronts can also be obtained simultaneously with the velocity measurements.

371 citations

Journal ArticleDOI
21 Aug 1998-Science
TL;DR: In this article, a high-intensity laser was used to shock-compress liquid deuterium to pressures from 22 to 340 gigapascals, which is a threshold for the transition from an insulating molecular fluid to an atomic metallic fluid.
Abstract: A high-intensity laser was used to shock-compress liquid deuterium to pressures from 22 to 340 gigapascals. In this regime deuterium is predicted to transform from an insulating molecular fluid to an atomic metallic fluid. Shock densities and pressures, determined by radiography, revealed an increase in compressibility near 100 gigapascals indicative of such a transition. Velocity interferometry measurements, obtained by reflecting a laser probe directly off the shock front in flight, demonstrated that deuterium shocked above 55 gigapascals has an electrical conductivity characteristic of a liquid metal and independently confirmed the radiography.

301 citations

Journal ArticleDOI
TL;DR: In this article, the first measurements of density, shock speed, and particle speed in liquid deuterium compressed by laser-generated shock waves to pressures from 25 to 210Gpa (0.25 to 2.1Mbar).
Abstract: We present results of the first measurements of density, shock speed, and particle speed in liquid deuterium compressed by laser-generated shock waves to pressures from 25 to 210Gpa (0.25 to 2.1Mbar). The data show a significant increase in D{sub 2} compressibility above 50Gpa compared to a widely used equation of state model. The data strongly suggest a thermal molecular dissociation transition of the diatomic fluid into a monatomic phase. {copyright} {ital 1997} {ital The American Physical Society}

290 citations

Journal ArticleDOI
M. J. Edwards1, P. K. Patel, J. D. Lindl1, L. J. Atherton, Siegfried Glenzer, S. W. Haan, J. D. Kilkenny, O. L. Landen, Edward I. Moses, A. Nikroo, R. D. Petrasso, T. C. Sangster, P. T. Springer, Steven H. Batha, R. Benedetti, L. A. Bernstein, Riccardo Betti, D. L. Bleuel, T. R. Boehly, D. K. Bradley, J. A. Caggiano, D. A. Callahan, P. M. Celliers, C. J. Cerjan, K. C. Chen, Daniel Clark, Gilbert Collins, E. L. Dewald, Laurent Divol, S. N. Dixit, Tilo Doeppner, D. H. Edgell, James E. Fair, Michael Farrell, R. J. Fortner, Johan Frenje, M. Gatu Johnson, E. M. Giraldez, V. Yu. Glebov, Gary Grim, B. A. Hammel, A. V. Hamza, D. R. Harding, S. P. Hatchett, N. Hein, Hans W. Herrmann, Damien Hicks, D. E. Hinkel, M. Hoppe, W. W. Hsing, Nobuhiko Izumi, B. Jacoby, O. S. Jones, Daniel H. Kalantar, Robert L. Kauffman, John Kline, J. P. Knauer, J. A. Koch, B. J. Kozioziemski, G. A. Kyrala, K. N. LaFortune, S. Le Pape, R. J. Leeper, R. A. Lerche, T. Ma, B. J. MacGowan, A. J. Mackinnon, Andrew MacPhee, Evan Mapoles, M. M. Marinak, M. Mauldin, P. W. McKenty, M. Meezan, Pierre Michel, Jose Milovich, J. D. Moody, Matthew Moran, D. H. Munro, C. L. Olson, Kathy Opachich, Art Pak, T. G. Parham, H.-S. Park, Joseph Ralph, Sean Regan, Bruce Remington, H. G. Rinderknecht, Harry Robey, M. D. Rosen, Steven Ross, Jay D. Salmonson, J. D. Sater, D. H. Schneider, Fredrick Seguin, Scott Sepke, D. A. Shaughnessy, V. A. Smalyuk, Brian Spears, Christian Stoeckl, Wolfgang Stoeffl, L. J. Suter, Cliff Thomas, R. Tommasini, Richard Town, S. V. Weber, Paul J. Wegner, K. Widman, Mark D. Wilke, Doug Wilson, Charles Yeamans, Alex Zylstra 
TL;DR: In this paper, a low-Z capsule filled with deuterium-tritium (DT) fuel via laser indirect-drive inertial confinement fusion and demonstrate fusion ignition and propagating thermonuclear burn with a net energy gain of ∼5-10 (fusion yield/input laser energy).
Abstract: The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory includes a precision laser system now capable of delivering 1.8 MJ at 500 TW of 0.35-μm light to a target. NIF has been operational since March 2009. A variety of experiments have been completed in support of NIF's mission areas: national security, fundamental science, and inertial fusion energy. NIF capabilities and infrastructure are in place to support its missions with nearly 60 X-ray, optical, and nuclear diagnostic systems. A primary goal of the National Ignition Campaign (NIC) on the NIF was to implode a low-Z capsule filled with ∼0.2 mg of deuterium-tritium (DT) fuel via laser indirect-drive inertial confinement fusion and demonstrate fusion ignition and propagating thermonuclear burn with a net energy gain of ∼5–10 (fusion yield/input laser energy). This requires assembling the DT fuel into a dense shell of ∼1000 g/cm3 with an areal density (ρR) of ∼1.5 g/cm2, surrounding a lower density hot spot with a temperature of ∼10 keV and a ρR ∼0.3 g/cm2, or approximately an α-particle range. Achieving these conditions demand precise control of laser and target parameters to allow a low adiabat, high convergence implosion with low ablator fuel mix. We have demonstrated implosion and compressed fuel conditions at ∼80–90% for most point design values independently, but not at the same time. The nuclear yield is a factor of ∼3–10× below the simulated values and a similar factor below the alpha dominated regime. This paper will discuss the experimental trends, the possible causes of the degraded performance (the off-set from the simulations), and the plan to understand and resolve the underlying physics issues.

271 citations

Journal ArticleDOI
TL;DR: In situ x-ray diffraction studies of iron under shock conditions confirm unambiguously a phase change from the bcc (alpha) to hcp (epsilon) structure, and are in good agreement with large-scale nonequilibrium molecular dynamics simulations.
Abstract: In-situ x-ray diffraction studies of iron under shock conditions confirm unambiguously a phase change from the bcc ({alpha}) to hcp ({var_epsilon}) structure. Previous identification of this transition in shock-loaded iron has been inferred from the correlation between shock wave-profile analyses and static high-pressure x-ray measurements. This correlation is intrinsically limited because dynamic loading can markedly affect the structural modifications of solids. The in-situ measurements are consistent with a uniaxial collapse along the [001] direction and shuffling of alternate (110) planes of atoms, and in good agreement with large-scale non-equilibrium molecular dynamics simulations.

252 citations


Cited by
More filters
Journal ArticleDOI
01 Apr 1988-Nature
TL;DR: In this paper, a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) is presented.
Abstract: Deposits of clastic carbonate-dominated (calciclastic) sedimentary slope systems in the rock record have been identified mostly as linearly-consistent carbonate apron deposits, even though most ancient clastic carbonate slope deposits fit the submarine fan systems better. Calciclastic submarine fans are consequently rarely described and are poorly understood. Subsequently, very little is known especially in mud-dominated calciclastic submarine fan systems. Presented in this study are a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) that reveals a >250 m thick calciturbidite complex deposited in a calciclastic submarine fan setting. Seven facies are recognised from core and thin section characterisation and are grouped into three carbonate turbidite sequences. They include: 1) Calciturbidites, comprising mostly of highto low-density, wavy-laminated bioclast-rich facies; 2) low-density densite mudstones which are characterised by planar laminated and unlaminated muddominated facies; and 3) Calcidebrites which are muddy or hyper-concentrated debrisflow deposits occurring as poorly-sorted, chaotic, mud-supported floatstones. These

9,929 citations

Journal Article
TL;DR: In this article, a fast Fourier transform method of topography and interferometry is proposed to discriminate between elevation and depression of the object or wave-front form, which has not been possible by the fringe-contour generation techniques.
Abstract: A fast-Fourier-transform method of topography and interferometry is proposed. By computer processing of a noncontour type of fringe pattern, automatic discrimination is achieved between elevation and depression of the object or wave-front form, which has not been possible by the fringe-contour-generation techniques. The method has advantages over moire topography and conventional fringe-contour interferometry in both accuracy and sensitivity. Unlike fringe-scanning techniques, the method is easy to apply because it uses no moving components.

3,742 citations

Journal ArticleDOI
01 Oct 1971-Nature
TL;DR: Lipson and Steeple as mentioned in this paper interpreted X-ray powder diffraction patterns and found that powder-diffraction patterns can be represented by a set of 3-dimensional planes.
Abstract: Interpretation of X-ray Powder Diffraction Patterns . By H. Lipson and H. Steeple. Pp. viii + 335 + 3 plates. (Mac-millan: London; St Martins Press: New York, May 1970.) £4.

1,867 citations

Journal ArticleDOI
TL;DR: The 1990 National Academy of Science final report of its review of the Inertial Confinement Fusion Program recommended completion of a series of target physics objectives on the 10-beam Nova laser at the Lawrence Livermore National Laboratory as the highest priority prerequisite for proceeding with construction of an ignition-scale laser facility as mentioned in this paper.
Abstract: The 1990 National Academy of Science final report of its review of the Inertial Confinement Fusion Program recommended completion of a series of target physics objectives on the 10-beam Nova laser at the Lawrence Livermore National Laboratory as the highest-priority prerequisite for proceeding with construction of an ignition-scale laser facility, now called the National Ignition Facility (NIF). These objectives were chosen to demonstrate that there was sufficient understanding of the physics of ignition targets that the laser requirements for laboratory ignition could be accurately specified. This research on Nova, as well as additional research on the Omega laser at the University of Rochester, is the subject of this review. The objectives of the U.S. indirect-drive target physics program have been to experimentally demonstrate and predictively model hohlraum characteristics, as well as capsule performance in targets that have been scaled in key physics variables from NIF targets. To address the hohlrau...

1,601 citations