scispace - formally typeset
Search or ask a question
Author

Gilbert O. Fruhwirth

Bio: Gilbert O. Fruhwirth is an academic researcher from King's College London. The author has contributed to research in topics: Metastasis & Fluorescence-lifetime imaging microscopy. The author has an hindex of 27, co-authored 73 publications receiving 2287 citations. Previous affiliations of Gilbert O. Fruhwirth include Graz University of Technology & Randall Division of Cell and Molecular Biophysics.


Papers
More filters
Journal ArticleDOI
TL;DR: The molecular features that are essential for the understanding of the biological actions of pure oxidized phospholipids are highlighted and their chemical structures are described as a basis for an understanding of their physical and (bio)chemical properties in membrane- and protein-bound form.

258 citations

Journal ArticleDOI
TL;DR: Although closely related, RhoA and RhoC have distinct molecular targets and functional roles in cell migration and invasion.
Abstract: Several studies suggest that RhoA and RhoC, despite their sequence similarity, have different roles in cell migration and invasion, but the molecular basis for this is not known. Using RNAi, we show that RhoA-depleted cells became elongated and extended multiple Rac1-driven narrow protrusions in 2D and 3D environments, leading to increased invasion. These phenotypes were caused by combined but distinct effects of the Rho-regulated kinases ROCK1 and ROCK2. Depletion of ROCK2 induced multiple delocalized protrusions and reduced migratory polarity, whereas ROCK1 depletion selectively led to cell elongation and defective tail retraction. In contrast, RhoC depletion increased cell spreading and induced Rac1 activation around the periphery in broad lamellipodia, thereby inhibiting directed migration and invasion. These effects of RhoC depletion are mediated by the formin FMNL3, which we identify as a new target of RhoC but not RhoA. We propose that RhoA contributes to migratory cell polarity through ROCK2-mediated suppression of Rac1 activity in lamellipodia, whereas RhoC promotes polarized migration through FMNL3 by restricting lamellipodial broadening.

247 citations

Journal ArticleDOI
TL;DR: The use of CAR technology is a clinically applicable refinement of Treg therapy for organ transplantation and alleviated the alloimmune‐mediated skin injury caused by transferring allogeneic peripheral blood mononuclear cells more effectively than polyclonal Tregs.

218 citations

Journal ArticleDOI
TL;DR: The production and economic value of this edible oil as well as its composition on a molecular basis, including fatty acids, vitamins, phytosterols, minerals, polyphenols, and the compounds responsible for its pigments, taste and flavor are described.
Abstract: Cucurbita pepo subsp. pepo var. Styriaca is a phylogenetically young member of the Cucurbita spp. since the mutation leading to dark green seeds with stunted outer hulls arose only in the 19th century. This mutation defined the so-called Styrian oil pumpkin and facilitated the production of Styrian pumpkin seed oil. It is a regional specialty oil in the south-eastern part of Europe. In this article, we describe the production and economic value of this edible oil as well as its composition on a molecular basis, including fatty acids, vitamins, phytosterols, minerals, polyphenols, and the compounds responsible for its pigments, taste and flavor. We also describe contaminants of Styrian pumpkin seed oil and the most relevant field pests of the Styrian oil pumpkin plant. Finally, we review the putative beneficial health effects of Styrian oil pumpkin seeds and of their products.

150 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

01 Aug 2000
TL;DR: Assessment of medical technology in the context of commercialization with Bioentrepreneur course, which addresses many issues unique to biomedical products.
Abstract: BIOE 402. Medical Technology Assessment. 2 or 3 hours. Bioentrepreneur course. Assessment of medical technology in the context of commercialization. Objectives, competition, market share, funding, pricing, manufacturing, growth, and intellectual property; many issues unique to biomedical products. Course Information: 2 undergraduate hours. 3 graduate hours. Prerequisite(s): Junior standing or above and consent of the instructor.

4,833 citations

Journal ArticleDOI
TL;DR: This review focuses on biochemical concepts of lipidPeroxidation, production, metabolism, and signaling mechanisms of two main omega-6 fatty acids lipid peroxidation products: malondialdehyde (MDA) and, in particular, 4-hydroxy-2-nonenal (4-HNE), summarizing not only its physiological and protective function as signaling molecule stimulating gene expression and cell survival, but also its cytotoxic role inhibiting geneexpression and promoting cell death.
Abstract: Lipid peroxidation can be described generally as a process under which oxidants such as free radicals attack lipids containing carbon-carbon double bond(s), especially polyunsaturated fatty acids (PUFAs). Over the last four decades, an extensive body of literature regarding lipid peroxidation has shown its important role in cell biology and human health. Since the early 1970s, the total published research articles on the topic of lipid peroxidation was 98 (1970–1974) and has been increasing at almost 135-fold, by up to 13165 in last 4 years (2010–2013). New discoveries about the involvement in cellular physiology and pathology, as well as the control of lipid peroxidation, continue to emerge every day. Given the enormity of this field, this review focuses on biochemical concepts of lipid peroxidation, production, metabolism, and signaling mechanisms of two main omega-6 fatty acids lipid peroxidation products: malondialdehyde (MDA) and, in particular, 4-hydroxy-2-nonenal (4-HNE), summarizing not only its physiological and protective function as signaling molecule stimulating gene expression and cell survival, but also its cytotoxic role inhibiting gene expression and promoting cell death. Finally, overviews of in vivo mammalian model systems used to study the lipid peroxidation process, and common pathological processes linked to MDA and 4-HNE are shown.

3,647 citations

Journal ArticleDOI
TL;DR: The development of both positive and negative small-molecule modulators of apoptosis is now enabling researchers to translate the discoveries that have been made in the laboratory into clinical practice to positively impact human health.
Abstract: The loss of vital cells within healthy tissues contributes to the development, progression and treatment outcomes of many human disorders, including neurological and infectious diseases as well as environmental and medical toxicities. Conversely, the abnormal survival and accumulation of damaged or superfluous cells drive prominent human pathologies such as cancers and autoimmune diseases. Apoptosis is an evolutionarily conserved cell death pathway that is responsible for the programmed culling of cells during normal eukaryotic development and maintenance of organismal homeostasis. This pathway is controlled by the BCL-2 family of proteins, which contains both pro-apoptotic and pro-survival members that balance the decision between cellular life and death. Recent insights into the dynamic interactions between BCL-2 family proteins and how they control apoptotic cell death in healthy and diseased cells have uncovered novel opportunities for therapeutic intervention. Importantly, the development of both positive and negative small-molecule modulators of apoptosis is now enabling researchers to translate the discoveries that have been made in the laboratory into clinical practice to positively impact human health.

987 citations