scispace - formally typeset
Search or ask a question
Author

Gilberto Brambilla

Other affiliations: Nanjing University
Bio: Gilberto Brambilla is an academic researcher from University of Southampton. The author has contributed to research in topics: Optical fiber & Microfiber. The author has an hindex of 44, co-authored 417 publications receiving 8039 citations. Previous affiliations of Gilberto Brambilla include Nanjing University.


Papers
More filters
Journal ArticleDOI
TL;DR: It is shown that very-long ultra-low-loss tapers can in fact be produced using a conventional fiber taper rig incorporating a simple burner configuration, and the optical losses achieved are one order of magnitude lower than losses previously reported in the literature for tapers of a similar size.
Abstract: Optical fiber tapers with a waist size larger than 1microm are commonplace in telecommunications and sensor applications. However the fabrication of low-loss optical fiber tapers with subwavelength diameters was previously thought to be impractical due to difficulties associated with control of the surface roughness and diameter uniformity. In this paper we show that very-long ultra-low-loss tapers can in fact be produced using a conventional fiber taper rig incorporating a simple burner configuration. For single-mode operation, the optical losses we achieve at 1.55microm are one order of magnitude lower than losses previously reported in the literature for tapers of a similar size. SEM images confirm excellent taper uniformity. We believe that these low-loss structures should pave the way to a whole range of fiber nanodevices.

601 citations

Journal ArticleDOI
TL;DR: In this paper, the authors review the fundamentals and applications of nanowires and microwires manufactured from optical fibres and present a variety of enabling properties, including large evanescent fields, flexibility, configurability, high confinement, robustness and compactness.
Abstract: Optical fibre nanowires and microwires offer a variety of enabling properties, including large evanescent fields, flexibility, configurability, high confinement, robustness and compactness. These distinctive features have been exploited in a wealth of applications ranging from telecommunication devices to sensors, from optical manipulation to high Q resonators. In this paper I will review the fundamentals and applications of nanowires and microwires manufactured from optical fibres.

346 citations

Journal ArticleDOI
TL;DR: In this article, a review of the manufacturing of optical fiber nanowires is presented, with a particular emphasis on their applications, and a solution to optical degradation issues is presented.
Abstract: Microwires and nanowires have been manufactured by using a wide range of bottom-up techniques such as chemical or physical vapor deposition and top-down processes such as fiber drawing. Among these techniques, the manufacture of wires from optical fibers provides the longest, most uniform and robust nanowires. Critically, the small surface roughness and the high-homogeneity associated with optical fiber nanowires (OFNs) provide low optical loss and allow the use of nanowires for a wide range of new applications for communications, sensing, lasers, biology, and chemistry. OFNs offer a number of outstanding optical and mechanical properties, including (1) large evanescent fields, (2) high-nonlinearity, (3) strong confinement, and (4) low-loss interconnection to other optical fibers and fiberized components. OFNs are fabricated by adiabatically stretching optical fibers and thus preserve the original optical fiber dimensions at their input and output, allowing ready splicing to standard fibers. A review of the manufacture of OFNs is presented, with a particular emphasis on their applications. Three different groups of applications have been envisaged: (1) devices based on the strong confinement or nonlinearity, (2) applications exploiting the large evanescent field, and (3) devices involving the taper transition regions. The first group includes supercontinuum generators, a range of nonlinear optical devices, and optical trapping. The second group comprises knot, loop, and coil resonators and their applications, sensing and particle propulsion by optical pressure. Finally, mode filtering and mode conversion represent applications based on the taper transition regions. Among these groups of applications, devices exploiting the OFN-based resonators are possibly the most interesting; because of the large evanescent field, when OFNs are coiled onto themselves the mode propagating in the wire interferes with itself to give a resonator. In contrast with the majority of high-Q resonators manufactured by other means, the OFN microresonator does not have major issues with input-output coupling and presents a completely integrated fiberized solution. OFNs can be used to manufacture loop and coil resonators with Q factors that, although still far from the predicted value of 10. The input-output pigtails play a major role in shaping the resonator response and can be used to maximize the Q factor over a wide range of coupling parameters. Finally, temporal stability and robustness issues are discussed, and a solution to optical degradation issues is presented.

331 citations

Journal ArticleDOI
TL;DR: An enhanced evanescent field fiber refractometer based on a tapered multimode fiber sandwiched between two single-mode fibers offers ultrahigh sensitivity and is the highest value reported to date (to the authors' knowledge) in the literature.
Abstract: We propose and experimentally demonstrate an enhanced evanescent field fiber refractometer based on a tapered multimode fiber sandwiched between two single-mode fibers Experiments show that this fiber sensor offers ultrahigh sensitivity [better than 1900nm/RIU at a refractive index (RI) of 144] for RI measurements within the range of 133 to 144, in agreement with the theoretical predictions This is the highest value reported to date (to our knowledge) in the literature

260 citations

Journal ArticleDOI
TL;DR: A novel refractometric sensor based on a coated all-coupling optical-fiber-nanowire microcoil resonator which is robust, compact, and comprises an intrinsic fluidic channel is presented.
Abstract: We present a novel refractometric sensor based on a coated all-coupling optical-fiber-nanowire microcoil resonator which is robust, compact, and comprises an intrinsic fluidic channel. We calculate the device sensitivity and find its dependence on the nanowire diameter and coating thickness. A sensitivity as high as 700 nm/RIU and a refractive index resolution as low as 10 are predicted. (See also erratum, doi:10.1364/OE.15.009385)

223 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: This article reviews the recent progress in optical biosensors that use the label-free detection protocol, in which biomolecules are unlabeled or unmodified, and are detected in their natural forms, and focuses on the optical biosENSors that utilize the refractive index change as the sensing transduction signal.

2,060 citations

PatentDOI
08 Jul 2008-Nature
TL;DR: In this article, a two-step process is described to generate a micrometer sized diameter silica preform fiber, and then the preform is drawn while coupled to a support element to form a nanometer sized diameter fiber.
Abstract: The present invention provides nanometer-sized diameter silica fibers that exhibit high diameter uniformity and surface smoothness. The silica fibers can have diameters in a range of a about 20 nm to about 1000 nm. An exemplary method according to one embodiment of the invention for generating such fibers utilizes a two-step process in which in an initial step a micrometer sized diameter silica preform fiber is generated, and in a second step, the silica preform is drawn while coupled to a support element to form a nanometer sized diameter silica fiber. The portion of the support element to which the preform is coupled is maintained at a temperature suitable for drawing the nansized fiber, and is preferably controlled to exhibit a temporally stable temperature profile.

1,357 citations

Journal ArticleDOI
TL;DR: Low-threshold amplified spontaneous emission and lasing from ∼10 nm monodisperse colloidal nanocrystals of caesium lead halide perovskites CsPbX3 are reported.
Abstract: Metal halide semiconductors with perovskite crystal structures have recently emerged as highly promising optoelectronic materials. Despite the recent surge of reports on microcrystalline, thin-film and bulk single-crystalline metal halides, very little is known about the photophysics of metal halides in the form of uniform, size-tunable nanocrystals. Here we report low-threshold amplified spontaneous emission and lasing from ∼10 nm monodisperse colloidal nanocrystals of caesium lead halide perovskites CsPbX3 (X=Cl, Br or I, or mixed Cl/Br and Br/I systems). We find that room-temperature optical amplification can be obtained in the entire visible spectral range (440–700 nm) with low pump thresholds down to 5±1 μJ cm−2 and high values of modal net gain of at least 450±30 cm−1. Two kinds of lasing modes are successfully observed: whispering-gallery-mode lasing using silica microspheres as high-finesse resonators, conformally coated with CsPbX3 nanocrystals and random lasing in films of CsPbX3 nanocrystals. Lead halide perovskite colloidal nanocrystals have promising optoelectronic properties, such as high photoluminescence quantum yields and narrow emission linewidths. Here, the authors report low-threshold amplified spontaneous emission and two kinds of lasing in nanostructured caesium lead halide perovskites.

1,305 citations

Journal ArticleDOI
22 Jan 2015-ACS Nano
TL;DR: The state of the art in research on colloidal NCs is reviewed focusing on the most recent works published in the last 2 years, where semiconductor NCs hold unique promise for near- and mid-infrared technologies, where very few semiconductor materials are available.
Abstract: Colloidal nanocrystals (NCs, i.e., crystalline nanoparticles) have become an important class of materials with great potential for applications ranging from medicine to electronic and optoelectronic devices. Today’s strong research focus on NCs has been prompted by the tremendous progress in their synthesis. Impressively narrow size distributions of just a few percent, rational shape-engineering, compositional modulation, electronic doping, and tailored surface chemistries are now feasible for a broad range of inorganic compounds. The performance of inorganic NC-based photovoltaic and light-emitting devices has become competitive to other state-of-the-art materials. Semiconductor NCs hold unique promise for near- and mid-infrared technologies, where very few semiconductor materials are available. On a purely fundamental side, new insights into NC growth, chemical transformations, and self-organization can be gained from rapidly progressing in situ characterization and direct imaging techniques. New phenom...

988 citations