scispace - formally typeset
Search or ask a question
Author

Gilles Bezançon

Bio: Gilles Bezançon is an academic researcher from Institut de recherche pour le développement. The author has contributed to research in topics: Genetic diversity & Population. The author has an hindex of 13, co-authored 27 publications receiving 723 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: A significantly lower number of alleles and lower gene diversity in cultivated pearl millet accessions than in wild accessions is shown, which contrasts with a previous study using iso-enzyme markers showing similar genetic diversity between cultivated and wild pearl Millet populations.
Abstract: Genetic diversity of crop species in sub-Sahelian Africa is still poorly documented. Among such crops, pearl millet is one of the most important staple species. In Niger, pearl millet covers more than 65% of the total cultivated area. Analyzing pearl millet genetic diversity, its origin and its dynamics is important for in situ and ex situ germplasm conservation and to increase knowledge useful for breeding programs. We developed new genetic markers and a high-throughput technique for the genetic analysis of pearl millet. Using 25 microsatellite markers, we analyzed genetic diversity in 46 wild and 421 cultivated accessions of pearl millet in Niger. We showed a significantly lower number of alleles and lower gene diversity in cultivated pearl millet accessions than in wild accessions. This result contrasts with a previous study using iso-enzyme markers showing similar genetic diversity between cultivated and wild pearl millet populations. We found a strong differentiation between the cultivated and wild groups in Niger. Analyses of introgressions between cultivated and wild accessions showed modest but statistically supported evidence of introgressions. Wild accessions in the central region of Niger showed introgressions of cultivated alleles. Accessions of cultivated pearl millet showed introgressions of wild alleles in the western, central, and eastern parts of Niger.

139 citations

Journal ArticleDOI
01 Jul 2009-Genetics
TL;DR: An association framework to identify genetic variations associated with the phenotype in pearl millet was developed and a significant association between genetic variation in this gene and these characters was confirmed.
Abstract: The identification of genes selected during and after plant domestication is an important research topic to enhance knowledge on adaptative evolution. Adaptation to different climates was a key factor in the spread of domesticated crops. We conducted a study to identify genes responsible for these adaptations in pearl millet and developed an association framework to identify genetic variations associated with the phenotype in this species. A set of 90 inbred lines genotyped using microsatellite loci and AFLP markers was used. The population structure was assessed using two different Bayesian approaches that allow inbreeding or not. Association studies were performed using a linear mixed model considering both the population structure and familial relationships between inbred lines. We assessed the ability of the method to limit the number of false positive associations on the basis of the two different Bayesian methods, the number of populations considered and different morphological traits while also assessing the power of the methodology to detect given additive effects. Finally, we applied this methodology to a set of eight pearl millet genes homologous to cereal flowering pathway genes. We found significant associations between several polymorphisms of the pearl millet PHYC gene and flowering time, spike length, and stem diameter in the inbred line panel. To validate this association, we performed a second association analysis in a different set of pearl millet individuals from Niger. We confirmed a significant association between genetic variation in this gene and these characters.

94 citations

Journal ArticleDOI
TL;DR: No erosion of varietal diversity was noted on a national scale during the period covered and this highlights that farmers’ management can preserve the diversity of millet and sorghum varieties in Niger despite recurrent and severe drought periods and major social changes.
Abstract: Changes in the diversity of landraces in centres of diversity of cultivated plants need to be assessed in order to monitor and conserve agrobioversity—a key-element of sustainable agriculture. This notably applies in tropical areas where factors such as increased populations, climate change and shifts in cropping systems are hypothesized to cause varietal erosion. To assess varietal erosion of staple crops in a country subjected to various anthropogenic and natural environmental changes, we carried out a study based on a comparison of the diversity of pearl millet and sorghum varieties collected in 79 villages spanning the entire cereal-growing zone of Niger over a 26 year period (1976–2003). For these two crops, the number, name and type of varieties according to important traits for farmers were considered at different spatial scales (country, region, village) at the two collection dates. The results confirmed the high diversity of millet and sorghum varieties in Niger. No erosion of varietal diversity was noted on a national scale during the period covered. Some changes were observed but were limited to the geographical distribution of certain varieties. This highlights that farmers’ management can preserve the diversity of millet and sorghum varieties in Niger despite recurrent and severe drought periods and major social changes. It also indicates that rainfed cereal cropping systems in Niger should remain to be based on millet and sorghum, while reinforcing farmers’ seed systems.

87 citations

Journal ArticleDOI
TL;DR: The geographical situation of Niger, where typical western African, central African and eastern Sahelian African sorghum races converge, explained the high observed genetic diversity and was responsible for the interactions among the ethnic, geographical and botanical structure revealed in this study.
Abstract: Understanding the geographical, environmental and social patterns of genetic diversity on different spatial scales is key to the sustainable in situ management of genetic resources. However, few surveys have been conducted on crop genetic diversity using exhaustive in situ germplasm collections on a country scale and such data are missing for sorghum in sub-Saharan Africa, its centre of origin. We report here a genetic analysis of 484 sorghum varieties collected in 79 villages evenly distributed across Niger, using 28 microsatellite markers. We found a high level of SSR diversity in Niger. Diversity varied between eastern and western Niger, and allelic richness was lower in the eastern part of the country. Genetic differentiation between botanical races was the first structuring factor (Fst = 0.19), but the geographical distribution and the ethnic group to which farmers belonged were also significantly associated with genetic diversity partitioning. Gene pools are poorly differentiated among climatic zones. The geographical situation of Niger, where typical western African (guinea), central African (caudatum) and eastern Sahelian African (durra) sorghum races converge, explained the high observed genetic diversity and was responsible for the interactions among the ethnic, geographical and botanical structure revealed in our study. After correcting for the structure of botanical races, spatial correlation of genetic diversity was still detected within 100 km, which may hint at limited seed exchanges between farmers. Sorghum domestication history, in relation to the spatial organisation of human societies, is therefore key information for sorghum in situ conservation programs in sub-Saharan Africa.

87 citations

Journal ArticleDOI
04 May 2011-PLOS ONE
TL;DR: It is concluded that recurrent drought can lead to selection for earlier flowering in a major Sahelian crop and Surprisingly, these results suggest that diffusion of crop varieties is not the main driver of short term adaptation to climatic variation.
Abstract: Climate changes will have an impact on food production and will require costly adaptive responses. Adapting to a changing environment will be particularly challenging in sub-Saharan Africa where climate change is expected to have a major impact. However, one important phenomenon that is often overlooked and is poorly documented is the ability of agro-systems to rapidly adapt to environmental variations. Such an adaptation could proceed by the adoption of new varieties or by the adaptation of varieties to a changing environment. In this study, we analyzed these two processes in one of the driest agro-ecosystems in Africa, the Sahel. We performed a detailed study in Niger where pearl millet is the main crop and covers 65% of the cultivated area. To assess how the agro-system is responding to recent recurrent drought, we analyzed samples of pearl millet landraces collected in the same villages in 1976 and 2003 throughout the entire cultivated area of Niger. We studied phenological and morphological differences in the 1976 and 2003 collections by comparing them over three cropping seasons in a common garden experiment. We found no major changes in the main cultivated varieties or in their genetic diversity. However, we observed a significant shift in adaptive traits. Compared to the 1976 samples, samples collected in 2003 displayed a shorter lifecycle, and a reduction in plant and spike size. We also found that an early flowering allele at the PHYC locus increased in frequency between 1976 and 2003. The increase exceeded the effect of drift and sampling, suggesting a direct effect of selection for earliness on this gene. We conclude that recurrent drought can lead to selection for earlier flowering in a major Sahelian crop. Surprisingly, these results suggest that diffusion of crop varieties is not the main driver of short term adaptation to climatic variation.

83 citations


Cited by
More filters
Journal Article
Fumio Tajima1
30 Oct 1989-Genomics
TL;DR: It is suggested that the natural selection against large insertion/deletion is so weak that a large amount of variation is maintained in a population.

11,521 citations

Journal ArticleDOI
07 Oct 2011-Science
TL;DR: Fitness-associated loci exhibited both geographic and climatic signatures of local adaptation, and independent local adaptation by distinct genetic mechanisms may facilitate a flexible evolutionary response to changing environment across a species range.
Abstract: Local adaptation is critical for species persistence in the face of rapid environmental change, but its genetic basis is not well understood. Growing the model plant Arabidopsis thaliana in field experiments in four sites across the species' native range, we identified candidate loci for local adaptation from a genome-wide association study of lifetime fitness in geographically diverse accessions. Fitness-associated loci exhibited both geographic and climatic signatures of local adaptation. Relative to genomic controls, high-fitness alleles were generally distributed closer to the site where they increased fitness, occupying specific and distinct climate spaces. Independent loci with different molecular functions contributed most strongly to fitness variation in each site. Independent local adaptation by distinct genetic mechanisms may facilitate a flexible evolutionary response to changing environment across a species range.

640 citations

Journal ArticleDOI
TL;DR: This review describes the various methods available to handle AFLP data, and investigates the characteristics and limitations of these statistical tools, and appeals for a wider adoption of methodologies borrowed from other research fields, like for example those especially designed to deal with binary data.
Abstract: Recently, the amplified fragment length polymorphism (AFLP) technique has gained a lot of popularity, and is now frequently applied to a wide variety of organisms. Technical specificities of the AFLP procedure have been well documented over the years, but there is on the contrary little or scattered information about the statistical analysis of AFLPs. In this review, we describe the various methods available to handle AFLP data, focusing on four research topics at the population or individual level of analysis: (i) assessment of genetic diversity; (ii) identification of population structure; (iii) identification of hybrid individuals; and (iv) detection of markers associated with phenotypes. Two kinds of analysis methods can be distinguished, depending on whether they are based on the direct study of band presences or absences in AFLP profiles ('band-based' methods), or on allelic frequencies estimated at each locus from these profiles ('allele frequency-based' methods). We investigate the characteristics and limitations of these statistical tools; finally, we appeal for a wider adoption of methodologies borrowed from other research fields, like for example those especially designed to deal with binary data.

563 citations

Journal ArticleDOI
TL;DR: The future of crop improvement will be centred on comparisons of individual plant genomes, and some of the best opportunities may lie in using combinations of new genetic mapping strategies and evolutionary analyses to direct and optimize the discovery and use of genetic variation.
Abstract: The completion of reference genome sequences for many important crops and the ability to perform high-throughput resequencing are providing opportunities for improving our understanding of the history of plant domestication and to accelerate crop improvement. Crop plant comparative genomics is being transformed by these data and a new generation of experimental and computational approaches. The future of crop improvement will be centred on comparisons of individual plant genomes, and some of the best opportunities may lie in using combinations of new genetic mapping strategies and evolutionary analyses to direct and optimize the discovery and use of genetic variation. Here we review such strategies and insights that are emerging.

520 citations

Journal ArticleDOI
TL;DR: It is argued that studying the fate of intraspecifc genetic diversity is an indispensable and logical venture if the authors are to fully understand the consequences of GCC on biodiversity on all levels.
Abstract: Genetic diversity provides the basic substrate for evolution, yet few studies assess the impacts of global climate change (GCC) on intraspecific genetic variation. In this review, we highlight the importance of incorporating neutral and non-neutral genetic diversity when assessing the impacts of GCC, for example, in studies that aim to predict the future distribution and fate of a species or ecological community. Specifically, we address the following questions: Why study the effects of GCC on intraspecific genetic diversity? How does GCC affect genetic diversity? How is the effect of GCC on genetic diversity currently studied? Where is potential for future research? For each of these questions, we provide a general background and highlight case studies across the animal, plant and microbial kingdoms. We further discuss how cryptic diversity can affect GCC assessments, how genetic diversity can be integrated into studies that aim to predict species' responses on GCC and how conservation efforts related to GCC can incorporate and profit from inclusion of genetic diversity assessments. We argue that studying the fate of intraspecifc genetic diversity is an indispensable and logical venture if we are to fully understand the consequences of GCC on biodiversity on all levels.

487 citations