scispace - formally typeset
Search or ask a question
Author

Gilles Clermont

Bio: Gilles Clermont is an academic researcher from University of Pittsburgh. The author has contributed to research in topics: Medicine & Intensive care. The author has an hindex of 31, co-authored 59 publications receiving 15037 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Severe sepsis is a common, expensive, and frequently fatal condition, with as many deaths annually as those from acute myocardial infarction, and is especially common in the elderly and is likely to increase substantially as the U.S. population ages.
Abstract: ObjectiveTo determine the incidence, cost, and outcome of severe sepsis in the United States.DesignObservational cohort study.SettingAll nonfederal hospitals (n = 847) in seven U.S. states.PatientsAll patients (n = 192,980) meeting criteria for severe sepsis based on the International Classification

7,888 citations

Journal ArticleDOI
TL;DR: In this general intensive care unit population, acute kidney 'risk, injury, failure', as defined by the newly developed RIFLE classification, is associated with increased hospital mortality and resource use.
Abstract: The lack of a standard definition for acute kidney injury has resulted in a large variation in the reported incidence and associated mortality RIFLE, a newly developed international consensus classification for acute kidney injury, defines three grades of severity – risk (class R), injury (class I) and failure (class F) – but has not yet been evaluated in a clinical series We performed a retrospective cohort study, in seven intensive care units in a single tertiary care academic center, on 5,383 patients admitted during a one year period (1 July 2000–30 June 2001) Acute kidney injury occurred in 67% of intensive care unit admissions, with maximum RIFLE class R, class I and class F in 12%, 27% and 28%, respectively Of the 1,510 patients (28%) that reached a level of risk, 840 (56%) progressed Patients with maximum RIFLE class R, class I and class F had hospital mortality rates of 88%, 114% and 263%, respectively, compared with 55% for patients without acute kidney injury Additionally, acute kidney injury (hazard ratio, 17; 95% confidence interval, 128–213; P < 0001) and maximum RIFLE class I (hazard ratio, 14; 95% confidence interval, 102–188; P = 0037) and class F (hazard ratio, 27; 95% confidence interval, 203–355; P < 0001) were associated with hospital mortality after adjusting for multiple covariates In this general intensive care unit population, acute kidney 'risk, injury, failure', as defined by the newly developed RIFLE classification, is associated with increased hospital mortality and resource use Patients with RIFLE class R are indeed at high risk of progression to class I or class F Patients with RIFLE class I or class F incur a significantly increased length of stay and an increased risk of inhospital mortality compared with those who do not progress past class R or those who never develop acute kidney injury, even after adjusting for baseline severity of illness, case mix, race, gender and age

1,417 citations

Journal ArticleDOI
TL;DR: Severe sepsis is a significant health problem in children and is associated with the use of extensive healthcare resources, and the mean length of stay and cost were 31 days and $40,600, respectively.
Abstract: Despite extensive research into the etiology and treatment of severe sepsis, little is known about its epidemiology in children. We sought to determine the age- and sex-adjusted incidence, outcome, and associated hospital costs of severe sepsis in United States children using 1995 hospital discharge and population data from seven states (24% of the United States population). Of 1,586,253 hospitalizations in children who were 19 years old or less, 9,675 met International Classification of Diseases, 9th revision, clinical modification–based severe sepsis criteria or 42,364 cases of pediatric severe sepsis per year nationally (0.56 cases per 1,000 population per year). The incidence was the highest in infants (5.16 per 1,000), fell dramatically in older children (0.20 per 1,000 in 10 to 14 year olds), and was 15% higher in boys than in girls (0.60 versus 0.52 per 1,000, p < 0.001). Hospital mortality was 10.3%, or 4,383 deaths nationally (6.2 per 100,000 population). Half of the cases had underlying disease ...

798 citations

Journal ArticleDOI
28 May 2019-JAMA
TL;DR: In this retrospective analysis of data sets from patients with sepsis, 4 clinical phenotypes were identified that correlated with host-response patterns and clinical outcomes, and simulations suggested these phenotypes may help in understanding heterogeneity of treatment effects.
Abstract: Importance Sepsis is a heterogeneous syndrome. Identification of distinct clinical phenotypes may allow more precise therapy and improve care. Objective To derive sepsis phenotypes from clinical data, determine their reproducibility and correlation with host-response biomarkers and clinical outcomes, and assess the potential causal relationship with results from randomized clinical trials (RCTs). Design, Settings, and Participants Retrospective analysis of data sets using statistical, machine learning, and simulation tools. Phenotypes were derived among 20 189 total patients (16 552 unique patients) who met Sepsis-3 criteria within 6 hours of hospital presentation at 12 Pennsylvania hospitals (2010-2012) using consensuskmeans clustering applied to 29 variables. Reproducibility and correlation with biological parameters and clinical outcomes were assessed in a second database (2013-2014; n = 43 086 total patients and n = 31 160 unique patients), in a prospective cohort study of sepsis due to pneumonia (n = 583), and in 3 sepsis RCTs (n = 4737). Exposures All clinical and laboratory variables in the electronic health record. Main Outcomes and Measures Derived phenotype (α, β, γ,and δ) frequency, host-response biomarkers, 28-day and 365-day mortality, and RCT simulation outputs. Results The derivation cohort included 20 189 patients with sepsis (mean age, 64 [SD, 17] years; 10 022 [50%] male; mean maximum 24-hour Sequential Organ Failure Assessment [SOFA] score, 3.9 [SD, 2.4]). The validation cohort included 43 086 patients (mean age, 67 [SD, 17] years; 21 993 [51%] male; mean maximum 24-hour SOFA score, 3.6 [SD, 2.0]). Of the 4 derived phenotypes, the α phenotype was the most common (n = 6625; 33%) and included patients with the lowest administration of a vasopressor; in the β phenotype (n = 5512; 27%), patients were older and had more chronic illness and renal dysfunction; in the γ phenotype (n = 5385; 27%), patients had more inflammation and pulmonary dysfunction; and in the δ phenotype (n = 2667; 13%), patients had more liver dysfunction and septic shock. Phenotype distributions were similar in the validation cohort. There were consistent differences in biomarker patterns by phenotype. In the derivation cohort, cumulative 28-day mortality was 287 deaths of 5691 unique patients (5%) for the α phenotype; 561 of 4420 (13%) for the β phenotype; 1031 of 4318 (24%) for the γ phenotype; and 897 of 2223 (40%) for the δ phenotype. Across all cohorts and trials, 28-day and 365-day mortality were highest among the δ phenotype vs the other 3 phenotypes (P 33% chance of benefit to >60% chance of harm). Conclusions and Relevance In this retrospective analysis of data sets from patients with sepsis, 4 clinical phenotypes were identified that correlated with host-response patterns and clinical outcomes, and simulations suggested these phenotypes may help in understanding heterogeneity of treatment effects. Further research is needed to determine the utility of these phenotypes in clinical care and for informing trial design and interpretation.

655 citations

Journal ArticleDOI
TL;DR: It is concluded that in the hospitalized elderly, CAP is a common and frequently fatal disease that often requires intensive care unit admission and mechanical ventilation and consumes considerable health care resources.
Abstract: Community-acquired pneumonia (CAP) is a frequent cause of hospital admission and death among elderly patients, but there is little information on age- and sex-specific incidence, patterns of care (intensive care unit admission and mechanical ventilation), resource use (length of stay and hospital costs), and outcome (mortality). We conducted an observational cohort study of all Medicare recipients, aged 65 years or older, hospitalized in nonfederal U.S. hospitals in 1997, who met ICD-9-CM-based criteria for CAP. We identified 623,718 hospital admissions for CAP (18.3 per 1,000 population > or = 65 years), of which 26,476 (4.3%) were from nursing homes and of which 66,045 (10.6%) died. The incidence rose five-fold and mortality doubled as age increased from 65-69 to older than 90 years. Men had a higher mortality, both unadjusted (odds ratio [OR]: 1.21 [95% CI: 1.19-1.23]) and adjusted for age, location before admission, underlying comorbidity, and microbiologic etiology (OR: 1.15 [95% CI: 1.13-1.17]). Mean hospital length of stay and costs per hospital admission were 7.6 days and $6,949. For those admitted to the intensive care unit (22.4%) and for those receiving mechanical ventilation (7.2%), mean length of stay and costs were 11.3 days and $14,294, and 15.7 days and $23,961, respectively. Overall hospital costs were $4.4 billion (6.3% of the expenditure in the elderly for acute hospital care), of which $2.1 billion was incurred by cases managed in intensive care units. We conclude that in the hospitalized elderly, CAP is a common and frequently fatal disease that often requires intensive care unit admission and mechanical ventilation and consumes considerable health care resources. The sex differences are of concern and require further investigation.

548 citations


Cited by
More filters
Journal ArticleDOI
23 Feb 2016-JAMA
TL;DR: The task force concluded the term severe sepsis was redundant and updated definitions and clinical criteria should replace previous definitions, offer greater consistency for epidemiologic studies and clinical trials, and facilitate earlier recognition and more timely management of patients with sepsi or at risk of developing sepsic shock.
Abstract: Importance Definitions of sepsis and septic shock were last revised in 2001. Considerable advances have since been made into the pathobiology (changes in organ function, morphology, cell biology, biochemistry, immunology, and circulation), management, and epidemiology of sepsis, suggesting the need for reexamination. Objective To evaluate and, as needed, update definitions for sepsis and septic shock. Process A task force (n = 19) with expertise in sepsis pathobiology, clinical trials, and epidemiology was convened by the Society of Critical Care Medicine and the European Society of Intensive Care Medicine. Definitions and clinical criteria were generated through meetings, Delphi processes, analysis of electronic health record databases, and voting, followed by circulation to international professional societies, requesting peer review and endorsement (by 31 societies listed in the Acknowledgment). Key Findings From Evidence Synthesis Limitations of previous definitions included an excessive focus on inflammation, the misleading model that sepsis follows a continuum through severe sepsis to shock, and inadequate specificity and sensitivity of the systemic inflammatory response syndrome (SIRS) criteria. Multiple definitions and terminologies are currently in use for sepsis, septic shock, and organ dysfunction, leading to discrepancies in reported incidence and observed mortality. The task force concluded the term severe sepsis was redundant. Recommendations Sepsis should be defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. For clinical operationalization, organ dysfunction can be represented by an increase in the Sequential [Sepsis-related] Organ Failure Assessment (SOFA) score of 2 points or more, which is associated with an in-hospital mortality greater than 10%. Septic shock should be defined as a subset of sepsis in which particularly profound circulatory, cellular, and metabolic abnormalities are associated with a greater risk of mortality than with sepsis alone. Patients with septic shock can be clinically identified by a vasopressor requirement to maintain a mean arterial pressure of 65 mm Hg or greater and serum lactate level greater than 2 mmol/L (>18 mg/dL) in the absence of hypovolemia. This combination is associated with hospital mortality rates greater than 40%. In out-of-hospital, emergency department, or general hospital ward settings, adult patients with suspected infection can be rapidly identified as being more likely to have poor outcomes typical of sepsis if they have at least 2 of the following clinical criteria that together constitute a new bedside clinical score termed quickSOFA (qSOFA): respiratory rate of 22/min or greater, altered mentation, or systolic blood pressure of 100 mm Hg or less. Conclusions and Relevance These updated definitions and clinical criteria should replace previous definitions, offer greater consistency for epidemiologic studies and clinical trials, and facilitate earlier recognition and more timely management of patients with sepsis or at risk of developing sepsis.

14,699 citations

Journal ArticleDOI
TL;DR: An update to the “Surviving Sepsis Campaign Guidelines for Management of Severe Sepsis and Septic Shock,” last published in 2008 is provided.
Abstract: Objective:To provide an update to the “Surviving Sepsis Campaign Guidelines for Management of Severe Sepsis and Septic Shock,” last published in 2008.Design:A consensus committee of 68 international experts representing 30 international organizations was convened. Nominal groups were assembled at ke

9,137 citations

Journal ArticleDOI
TL;DR: This study randomly assigned patients who arrived at an urban emergency department with severe sepsis or septic shock to receive either six hours of early goal-directed therapy or standard therapy (as a control) before admission to the intensive care unit.
Abstract: Background Goal-directed therapy has been used for severe sepsis and septic shock in the intensive care unit. This approach involves adjustments of cardiac preload, afterload, and contractility to balance oxygen delivery with oxygen demand. The purpose of this study was to evaluate the efficacy of early goal-directed therapy before admission to the intensive care unit. Methods We randomly assigned patients who arrived at an urban emergency department with severe sepsis or septic shock to receive either six hours of early goal-directed therapy or standard therapy (as a control) before admission to the intensive care unit. Clinicians who subsequently assumed the care of the patients were blinded to the treatment assignment. In-hospital mortality (the primary efficacy outcome), end points with respect to resuscitation, and Acute Physiology and Chronic Health Evaluation (APACHE II) scores were obtained serially for 72 hours and compared between the study groups. Results Of the 263 enrolled patients, 130 were ...

8,811 citations

Journal ArticleDOI
TL;DR: A consensus committee of 68 international experts representing 30 international organizations was convened in 2008 to provide an update to the "Surviving Sepsis Campaign Guidelines for Management of Severe Sepsis and Septic Shock".
Abstract: To provide an update to the “Surviving Sepsis Campaign Guidelines for Management of Severe Sepsis and Septic Shock,” last published in 2008. A consensus committee of 68 international experts representing 30 international organizations was convened. Nominal groups were assembled at key international meetings (for those committee members attending the conference). A formal conflict of interest policy was developed at the onset of the process and enforced throughout. The entire guidelines process was conducted independent of any industry funding. A stand-alone meeting was held for all subgroup heads, co- and vice-chairs, and selected individuals. Teleconferences and electronic-based discussion among subgroups and among the entire committee served as an integral part of the development. The authors were advised to follow the principles of the Grading of Recommendations Assessment, Development and Evaluation (GRADE) system to guide assessment of quality of evidence from high (A) to very low (D) and to determine the strength of recommendations as strong (1) or weak (2). The potential drawbacks of making strong recommendations in the presence of low-quality evidence were emphasized. Recommendations were classified into three groups: (1) those directly targeting severe sepsis; (2) those targeting general care of the critically ill patient and considered high priority in severe sepsis; and (3) pediatric considerations. Key recommendations and suggestions, listed by category, include: early quantitative resuscitation of the septic patient during the first 6 h after recognition (1C); blood cultures before antibiotic therapy (1C); imaging studies performed promptly to confirm a potential source of infection (UG); administration of broad-spectrum antimicrobials therapy within 1 h of the recognition of septic shock (1B) and severe sepsis without septic shock (1C) as the goal of therapy; reassessment of antimicrobial therapy daily for de-escalation, when appropriate (1B); infection source control with attention to the balance of risks and benefits of the chosen method within 12 h of diagnosis (1C); initial fluid resuscitation with crystalloid (1B) and consideration of the addition of albumin in patients who continue to require substantial amounts of crystalloid to maintain adequate mean arterial pressure (2C) and the avoidance of hetastarch formulations (1B); initial fluid challenge in patients with sepsis-induced tissue hypoperfusion and suspicion of hypovolemia to achieve a minimum of 30 mL/kg of crystalloids (more rapid administration and greater amounts of fluid may be needed in some patients (1C); fluid challenge technique continued as long as hemodynamic improvement is based on either dynamic or static variables (UG); norepinephrine as the first-choice vasopressor to maintain mean arterial pressure ≥65 mmHg (1B); epinephrine when an additional agent is needed to maintain adequate blood pressure (2B); vasopressin (0.03 U/min) can be added to norepinephrine to either raise mean arterial pressure to target or to decrease norepinephrine dose but should not be used as the initial vasopressor (UG); dopamine is not recommended except in highly selected circumstances (2C); dobutamine infusion administered or added to vasopressor in the presence of (a) myocardial dysfunction as suggested by elevated cardiac filling pressures and low cardiac output, or (b) ongoing signs of hypoperfusion despite achieving adequate intravascular volume and adequate mean arterial pressure (1C); avoiding use of intravenous hydrocortisone in adult septic shock patients if adequate fluid resuscitation and vasopressor therapy are able to restore hemodynamic stability (2C); hemoglobin target of 7–9 g/dL in the absence of tissue hypoperfusion, ischemic coronary artery disease, or acute hemorrhage (1B); low tidal volume (1A) and limitation of inspiratory plateau pressure (1B) for acute respiratory distress syndrome (ARDS); application of at least a minimal amount of positive end-expiratory pressure (PEEP) in ARDS (1B); higher rather than lower level of PEEP for patients with sepsis-induced moderate or severe ARDS (2C); recruitment maneuvers in sepsis patients with severe refractory hypoxemia due to ARDS (2C); prone positioning in sepsis-induced ARDS patients with a Pao 2/Fio 2 ratio of ≤100 mm Hg in facilities that have experience with such practices (2C); head-of-bed elevation in mechanically ventilated patients unless contraindicated (1B); a conservative fluid strategy for patients with established ARDS who do not have evidence of tissue hypoperfusion (1C); protocols for weaning and sedation (1A); minimizing use of either intermittent bolus sedation or continuous infusion sedation targeting specific titration endpoints (1B); avoidance of neuromuscular blockers if possible in the septic patient without ARDS (1C); a short course of neuromuscular blocker (no longer than 48 h) for patients with early ARDS and a Pao 2/Fi o 2 180 mg/dL, targeting an upper blood glucose ≤180 mg/dL (1A); equivalency of continuous veno-venous hemofiltration or intermittent hemodialysis (2B); prophylaxis for deep vein thrombosis (1B); use of stress ulcer prophylaxis to prevent upper gastrointestinal bleeding in patients with bleeding risk factors (1B); oral or enteral (if necessary) feedings, as tolerated, rather than either complete fasting or provision of only intravenous glucose within the first 48 h after a diagnosis of severe sepsis/septic shock (2C); and addressing goals of care, including treatment plans and end-of-life planning (as appropriate) (1B), as early as feasible, but within 72 h of intensive care unit admission (2C). Recommendations specific to pediatric severe sepsis include: therapy with face mask oxygen, high flow nasal cannula oxygen, or nasopharyngeal continuous PEEP in the presence of respiratory distress and hypoxemia (2C), use of physical examination therapeutic endpoints such as capillary refill (2C); for septic shock associated with hypovolemia, the use of crystalloids or albumin to deliver a bolus of 20 mL/kg of crystalloids (or albumin equivalent) over 5–10 min (2C); more common use of inotropes and vasodilators for low cardiac output septic shock associated with elevated systemic vascular resistance (2C); and use of hydrocortisone only in children with suspected or proven “absolute”’ adrenal insufficiency (2C). Strong agreement existed among a large cohort of international experts regarding many level 1 recommendations for the best care of patients with severe sepsis. Although a significant number of aspects of care have relatively weak support, evidence-based recommendations regarding the acute management of sepsis and septic shock are the foundation of improved outcomes for this important group of critically ill patients.

6,283 citations