scispace - formally typeset
Search or ask a question
Author

Gina Henry

Bio: Gina Henry is an academic researcher from University of California, Los Angeles. The author has contributed to research in topics: CD8 & Acquired immune system. The author has an hindex of 1, co-authored 1 publications receiving 4022 citations.

Papers
More filters
Journal ArticleDOI
27 Nov 2014-Nature
TL;DR: It is shown that pre-existing CD8+ T cells distinctly located at the invasive tumour margin are associated with expression of the PD-1/PD-L1 immune inhibitory axis and may predict response to therapy.
Abstract: Therapies that target the programmed death-1 (PD-1) receptor have shown unprecedented rates of durable clinical responses in patients with various cancer types One mechanism by which cancer tissues limit the host immune response is via upregulation of PD-1 ligand (PD-L1) and its ligation to PD-1 on antigen-specific CD8(+) T cells (termed adaptive immune resistance) Here we show that pre-existing CD8(+) T cells distinctly located at the invasive tumour margin are associated with expression of the PD-1/PD-L1 immune inhibitory axis and may predict response to therapy We analysed samples from 46 patients with metastatic melanoma obtained before and during anti-PD-1 therapy (pembrolizumab) using quantitative immunohistochemistry, quantitative multiplex immunofluorescence, and next-generation sequencing for T-cell antigen receptors (TCRs) In serially sampled tumours, patients responding to treatment showed proliferation of intratumoral CD8(+) T cells that directly correlated with radiographic reduction in tumour size Pre-treatment samples obtained from responding patients showed higher numbers of CD8-, PD-1- and PD-L1-expressing cells at the invasive tumour margin and inside tumours, with close proximity between PD-1 and PD-L1, and a more clonal TCR repertoire Using multivariate analysis, we established a predictive model based on CD8 expression at the invasive margin and validated the model in an independent cohort of 15 patients Our findings indicate that tumour regression after therapeutic PD-1 blockade requires pre-existing CD8(+) T cells that are negatively regulated by PD-1/PD-L1-mediated adaptive immune resistance

5,129 citations


Cited by
More filters
Journal ArticleDOI
03 Apr 2015-Science
TL;DR: Treatment efficacy was associated with a higher number of mutations in the tumors, and a tumor-specific T cell response paralleled tumor regression in one patient, suggesting that the genomic landscape of lung cancers shapes response to anti–PD-1 therapy.
Abstract: Immune checkpoint inhibitors, which unleash a patient’s own T cells to kill tumors, are revolutionizing cancer treatment. To unravel the genomic determinants of response to this therapy, we used whole-exome sequencing of non–small cell lung cancers treated with pembrolizumab, an antibody targeting programmed cell death-1 (PD-1). In two independent cohorts, higher nonsynonymous mutation burden in tumors was associated with improved objective response, durable clinical benefit, and progression-free survival. Efficacy also correlated with the molecular smoking signature, higher neoantigen burden, and DNA repair pathway mutations; each factor was also associated with mutation burden. In one responder, neoantigen-specific CD8+ T cell responses paralleled tumor regression, suggesting that anti–PD-1 therapy enhances neoantigen-specific T cell reactivity. Our results suggest that the genomic landscape of lung cancers shapes response to anti–PD-1 therapy.

6,215 citations

Journal ArticleDOI
TL;DR: Pembrolizumab had an acceptable side-effect profile and showed antitumor activity in patients with advanced non-small-cell lung cancer and PD-L1 expression in at least 50% of tumor cells correlated with improved efficacy of pembrolIZumab.
Abstract: BackgroundWe assessed the efficacy and safety of programmed cell death 1 (PD-1) inhibition with pembrolizumab in patients with advanced non–small-cell lung cancer enrolled in a phase 1 study. We also sought to define and validate an expression level of the PD-1 ligand 1 (PD-L1) that is associated with the likelihood of clinical benefit. MethodsWe assigned 495 patients receiving pembrolizumab (at a dose of either 2 mg or 10 mg per kilogram of body weight every 3 weeks or 10 mg per kilogram every 2 weeks) to either a training group (182 patients) or a validation group (313 patients). We assessed PD-L1 expression in tumor samples using immunohistochemical analysis, with results reported as the percentage of neoplastic cells with staining for membranous PD-L1 (proportion score). Response was assessed every 9 weeks by central review. ResultsCommon side effects that were attributed to pembrolizumab were fatigue, pruritus, and decreased appetite, with no clear difference according to dose or schedule. Among all ...

4,834 citations

Journal ArticleDOI
TL;DR: The anti-PD-1 antibody pembrolizumab prolonged progression-free survival and overall survival and had less high-grade toxicity than did ipilimumab in patients with advanced melanoma.
Abstract: Background The immune checkpoint inhibitor ipilimumab is the standard-of-care treatment for patients with advanced melanoma. Pembrolizumab inhibits the programmed cell death 1 (PD-1) immune checkpoint and has antitumor activity in patients with advanced melanoma. Methods In this randomized, controlled, phase 3 study, we assigned 834 patients with advanced melanoma in a 1:1:1 ratio to receive pembrolizumab (at a dose of 10 mg per kilogram of body weight) every 2 weeks or every 3 weeks or four doses of ipilimumab (at 3 mg per kilogram) every 3 weeks. Primary end points were progressionfree and overall survival. Results The estimated 6-month progression-free-survival rates were 47.3% for pembrolizumab every 2 weeks, 46.4% for pembrolizumab every 3 weeks, and 26.5% for ipilimumab (hazard ratio for disease progression, 0.58; P<0.001 for both pembrolizumab regimens versus ipilimumab; 95% confidence intervals [CIs], 0.46 to 0.72 and 0.47 to 0.72, respectively). Estimated 12-month survival rates were 74.1%, 68.4%, and 58.2%, respectively (hazard ratio for death for pembrolizumab every 2 weeks, 0.63; 95% CI, 0.47 to 0.83; P = 0.0005; hazard ratio for pembrolizumab every 3 weeks, 0.69; 95% CI, 0.52 to 0.90; P = 0.0036). The response rate was improved with pembrolizumab administered every 2 weeks (33.7%) and every 3 weeks (32.9%), as compared with ipilimumab (11.9%) (P<0.001 for both comparisons). Responses were ongoing in 89.4%, 96.7%, and 87.9% of patients, respectively, after a median follow-up of 7.9 months. Efficacy was similar in the two pembrolizumab groups. Rates of treatment-related adverse events of grade 3 to 5 severity were lower in the pembrolizumab groups (13.3% and 10.1%) than in the ipilimumab group (19.9%). Conclusions The anti–PD-1 antibody pembrolizumab prolonged progression-free survival and overall survival and had less high-grade toxicity than did ipilimumab in patients with advanced melanoma. (Funded by Merck Sharp & Dohme; KEYNOTE-006 ClinicalTrials .gov number, NCT01866319.)

4,612 citations

Journal ArticleDOI
28 Jul 2017-Science
TL;DR: Evaluating the efficacy of PD-1 blockade in patients with advanced mismatch repair–deficient cancers across 12 different tumor types showed that colorectal cancers with mismatch repair deficiency were sensitive to immune checkpoint blockade with antibodies to programmed death receptor–1 (PD-1).
Abstract: The genomes of cancers deficient in mismatch repair contain exceptionally high numbers of somatic mutations. In a proof-of-concept study, we previously showed that colorectal cancers with mismatch repair deficiency were sensitive to immune checkpoint blockade with antibodies to programmed death receptor–1 (PD-1). We have now expanded this study to evaluate the efficacy of PD-1 blockade in patients with advanced mismatch repair–deficient cancers across 12 different tumor types. Objective radiographic responses were observed in 53% of patients, and complete responses were achieved in 21% of patients. Responses were durable, with median progression-free survival and overall survival still not reached. Functional analysis in a responding patient demonstrated rapid in vivo expansion of neoantigen-specific T cell clones that were reactive to mutant neopeptides found in the tumor. These data support the hypothesis that the large proportion of mutant neoantigens in mismatch repair–deficient cancers make them sensitive to immune checkpoint blockade, regardless of the cancers’ tissue of origin.

4,569 citations

Journal ArticleDOI
23 Mar 2018-Science
TL;DR: New-generation combinatorial therapies may overcome resistance mechanisms to immune checkpoint therapy, and evidence points to alterations that converge on the antigen presentation and interferon-γ signaling pathways.
Abstract: The release of negative regulators of immune activation (immune checkpoints) that limit antitumor responses has resulted in unprecedented rates of long-lasting tumor responses in patients with a variety of cancers. This can be achieved by antibodies blocking the cytotoxic T lymphocyte–associated protein 4 (CTLA-4) or the programmed cell death 1 (PD-1) pathway, either alone or in combination. The main premise for inducing an immune response is the preexistence of antitumor T cells that were limited by specific immune checkpoints. Most patients who have tumor responses maintain long-lasting disease control, yet one-third of patients relapse. Mechanisms of acquired resistance are currently poorly understood, but evidence points to alterations that converge on the antigen presentation and interferon-γ signaling pathways. New-generation combinatorial therapies may overcome resistance mechanisms to immune checkpoint therapy.

3,736 citations