scispace - formally typeset
Search or ask a question
Author

Giovanna R. Mallucci

Bio: Giovanna R. Mallucci is an academic researcher from University of Cambridge. The author has contributed to research in topics: Neurodegeneration & Unfolded protein response. The author has an hindex of 31, co-authored 61 publications receiving 4883 citations. Previous affiliations of Giovanna R. Mallucci include Medical Research Council & University College London.


Papers
More filters
Journal ArticleDOI
31 Oct 2003-Science
TL;DR: It is found that depleting endogenous neuronal PrPc in mice with established neuroinvasive prion infection reversed early spongiform change and prevented neuronal loss and progression to clinical disease.
Abstract: The mechanisms involved in prion neurotoxicity are unclear, and therapies preventing accumulation of PrPSc, the disease-associated form of prion protein (PrP), do not significantly prolong survival in mice with central nervous system prion infection. We found that depleting endogenous neuronal PrPc in mice with established neuroinvasive prion infection reversed early spongiform change and prevented neuronal loss and progression to clinical disease. This occurred despite the accumulation of extraneuronal PrPSc to levels seen in terminally ill wild-type animals. Thus, the propagation of nonneuronal PrPSc is not pathogenic, but arresting the continued conversion of PrPc to PrPSc within neurons during scrapie infection prevents prion neurotoxicity.

703 citations

Journal ArticleDOI
24 May 2012-Nature
TL;DR: It is shown that accumulation of prion protein during prion replication causes persistent translational repression of global protein synthesis by eIF2α-P, associated with synaptic failure and neuronal loss in prion-diseased mice, and that promoting translational recovery in hippocampi of prionsinfected mice is neuroprotective.
Abstract: Accumulation of prion protein during prion replication causes persistent translational repression of global protein synthesis, which is mediated by eIF2α-P and is associated with synaptic failure and neuronal loss in prion-diseased mice; promoting translational recovery in hippocampi of prion-infected mice is neuroprotective. Despite extensive research, the mechanisms leading to neuronal loss in neurodegenerative disease are still little understood, and no treatments or promising treatment strategies exist. Using prion-diseased mice as a model, this study demonstrates that the accumulation of misfolded prion protein during prion replication causes persistent translational repression of global protein synthesis. This is mediated by eIF2α-P and is associated with synaptic failure and neuronal loss in prion-diseased mice. Promoting translational recovery in the hippocampi of prion-infected mice is neuroprotective, suggesting that a generic approach involving the fine-tuning of protein synthesis may be worth pursuing in prion diseases, and perhaps in other neurodegenerative disorders involving protein misfolding. The mechanisms leading to neuronal death in neurodegenerative disease are poorly understood. Many of these disorders, including Alzheimer’s, Parkinson’s and prion diseases, are associated with the accumulation of misfolded disease-specific proteins. The unfolded protein response is a protective cellular mechanism triggered by rising levels of misfolded proteins. One arm of this pathway results in the transient shutdown of protein translation, through phosphorylation of the α-subunit of eukaryotic translation initiation factor, eIF2. Activation of the unfolded protein response and/or increased eIF2α-P levels are seen in patients with Alzheimer’s, Parkinson’s and prion diseases1,2,3,4, but how this links to neurodegeneration is unknown. Here we show that accumulation of prion protein during prion replication causes persistent translational repression of global protein synthesis by eIF2α-P, associated with synaptic failure and neuronal loss in prion-diseased mice. Further, we show that promoting translational recovery in hippocampi of prion-infected mice is neuroprotective. Overexpression of GADD34, a specific eIF2α-P phosphatase, as well as reduction of levels of prion protein by lentivirally mediated RNA interference, reduced eIF2α-P levels. As a result, both approaches restored vital translation rates during prion disease, rescuing synaptic deficits and neuronal loss, thereby significantly increasing survival. In contrast, salubrinal, an inhibitor of eIF2α-P dephosphorylation5, increased eIF2α-P levels, exacerbating neurotoxicity and significantly reducing survival in prion-diseased mice. Given the prevalence of protein misfolding and activation of the unfolded protein response in several neurodegenerative diseases, our results suggest that manipulation of common pathways such as translational control, rather than disease-specific approaches, may lead to new therapies preventing synaptic failure and neuronal loss across the spectrum of these disorders.

548 citations

Journal ArticleDOI
TL;DR: Oral treatment with a specific inhibitor of the kinase PERK, a key mediator of this UPR pathway, prevented UPR-mediated translational repression and abrogated development of clinical prion disease in mice, with neuroprotection observed throughout the mouse brain.
Abstract: During prion disease, an increase in misfolded prion protein (PrP) generated by prion replication leads to sustained overactivation of the branch of the unfolded protein response (UPR) that controls the initiation of protein synthesis. This results in persistent repression of translation, resulting in the loss of critical proteins that leads to synaptic failure and neuronal death. We have previously reported that localized genetic manipulation of this pathway rescues shutdown of translation and prevents neurodegeneration in a mouse model of prion disease, suggesting that pharmacological inhibition of this pathway might be of therapeutic benefit. We show that oral treatment with a specific inhibitor of the kinase PERK (protein kinase RNA–like endoplasmic reticulum kinase), a key mediator of this UPR pathway, prevented UPR-mediated translational repression and abrogated development of clinical prion disease in mice, with neuroprotection observed throughout the mouse brain. This was the case for animals treated both at the preclinical stage and also later in disease when behavioral signs had emerged. Critically, the compound acts downstream and independently of the primary pathogenic process of prion replication and is effective despite continuing accumulation of misfolded PrP. These data suggest that PERK, and other members of this pathway, may be new therapeutic targets for developing drugs against prion disease or other neurodegenerative diseases where the UPR has been implicated.

503 citations

Journal ArticleDOI
TL;DR: It is shown that acute depletion ofPrP does not affect neuronal survival in this model, ruling out loss of PrP function as a pathogenic mechanism in prion disease and validating therapeutic approaches targeting PrP.
Abstract: Prion protein (PrP) plays a crucial role in prion disease, but its physiological function remains unclear. Mice with gene deletions restricted to the coding region of PrP have only minor phenotypic deficits, but are resistant to prion disease. We generated double transgenic mice using the Cre-loxP system to examine the effects of PrP depletion on neuronal survival and function in adult brain. Cre-mediated ablation of PrP in neurons occurred after 9 weeks. We found that the mice remained healthy without evidence of neurodegeneration or other histopathological changes for up to 15 months post-knockout. However, on neurophysiological evaluation, they showed significant reduction of afterhyperpolarization potentials (AHPs) in hippocampal CA1 cells, suggesting a direct role for PrP in the modulation of neuronal excitability. These data provide new insights into PrP function. Furthermore, they show that acute depletion of PrP does not affect neuronal survival in this model, ruling out loss of PrP function as a pathogenic mechanism in prion disease and validating therapeutic approaches targeting PrP.

396 citations

Journal ArticleDOI
TL;DR: This article focuses on emerging mechanisms for promoting the clearance of neurotoxic proteins, a strategy that may curtail the onset and slow the progression of NDAs.
Abstract: Neurodegenerative disorders of ageing such as Alzheimer disease, Parkinson disease and Huntington disease are characterized by the presence of neurotoxic misfolded and aggregated proteins. One reason underlying the accumulation of these proteins is insufficient clearance by intracellular and extracellular pathways such as the autophagic–lysosomal network and the glymph system. This article reviews the potential for therapeutically enhancing the clearance of neurotoxic proteins to curtail the onset and slow the progression of neurodegenerative disorders of ageing. Neurodegenerative disorders of ageing (NDAs) such as Alzheimer disease, Parkinson disease, frontotemporal dementia, Huntington disease and amyotrophic lateral sclerosis represent a major socio-economic challenge in view of their high prevalence yet poor treatment. They are often called 'proteinopathies' owing to the presence of misfolded and aggregated proteins that lose their physiological roles and acquire neurotoxic properties. One reason underlying the accumulation and spread of oligomeric forms of neurotoxic proteins is insufficient clearance by the autophagic–lysosomal network. Several other clearance pathways are also compromised in NDAs: chaperone-mediated autophagy, the ubiquitin–proteasome system, extracellular clearance by proteases and extrusion into the circulation via the blood–brain barrier and glymphatic system. This article focuses on emerging mechanisms for promoting the clearance of neurotoxic proteins, a strategy that may curtail the onset and slow the progression of NDAs.

311 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Treatment needs to move from merely suppressing symptoms to a disease-modifying strategy aimed at both preventing maladaptive plasticity and reducing intrinsic risk.
Abstract: Neuropathic pain is triggered by lesions to the somatosensory nervous system that alter its structure and function so that pain occurs spontaneously and responses to noxious and innocuous stimuli are pathologically amplified. The pain is an expression of maladaptive plasticity within the nociceptive system, a series of changes that constitute a neural disease state. Multiple alterations distributed widely across the nervous system contribute to complex pain phenotypes. These alterations include ectopic generation of action potentials, facilitation and disinhibition of synaptic transmission, loss of synaptic connectivity and formation of new synaptic circuits, and neuroimmune interactions. Although neural lesions are necessary, they are not sufficient to generate neuropathic pain; genetic polymorphisms, gender, and age all influence the risk of developing persistent pain. Treatment needs to move from merely suppressing symptoms to a disease-modifying strategy aimed at both preventing maladaptive plasticity and reducing intrinsic risk.

1,616 citations

Journal ArticleDOI
TL;DR: The aim of this article is to review the literature on the molecular mechanism of protein misfolding and aggregation, its role in Neurodegeneration and the potential targets for therapeutic intervention in neurodegenerative diseases.
Abstract: Recent evidence indicates that diverse neurodegenerative diseases might have a common cause and pathological mechanism — the misfolding, aggregation and accumulation of proteins in the brain, resulting in neuronal apoptosis. Studies from different disciplines strongly support this hypothesis and indicate that a common therapy for these devastating disorders might be possible. The aim of this article is to review the literature on the molecular mechanism of protein misfolding and aggregation, its role in neurodegeneration and the potential targets for therapeutic intervention in neurodegenerative diseases. Many questions still need to be answered and future research in this field will result in exciting new discoveries that might impact other areas of biology.

1,355 citations

Journal ArticleDOI
21 Jan 2016-Nature
TL;DR: In eukaryotic cells, the endoplasmic reticulum is essential for the folding and trafficking of proteins that enter the secretory pathway and contributes to the aetiology of many human diseases.
Abstract: In eukaryotic cells, the endoplasmic reticulum is essential for the folding and trafficking of proteins that enter the secretory pathway. Environmental insults or increased protein synthesis often lead to protein misfolding in the organelle, the accumulation of misfolded or unfolded proteins - known as endoplasmic reticulum stress - and the activation of the adaptive unfolded protein response to restore homeostasis. If protein misfolding is not resolved, cells die. Endoplasmic reticulum stress and activation of the unfolded protein response help to determine cell fate and function. Furthermore, endoplasmic reticulum stress contributes to the aetiology of many human diseases.

1,061 citations

Journal ArticleDOI
09 Nov 2007-Science
TL;DR: Recent advances suggest that prions themselves are not directly neurotoxic, but rather their propagation involves production of toxic species, which may be uncoupled from infectivity.
Abstract: Prions are lethal mammalian pathogens composed of aggregated conformational isomers of a host-encoded glycoprotein and which appear to lack nucleic acids. Their unique biology, allied with the public-health risks posed by prion zoonoses such as bovine spongiform encephalopathy, has focused much attention on the molecular basis of prion propagation and the "species barrier" that controls cross-species transmission. Both are intimately linked to understanding how multiple prion "strains" are encoded by a protein-only agent. The underlying mechanisms are clearly of much wider importance, and analogous protein-based inheritance mechanisms are recognized in yeast and fungi. Recent advances suggest that prions themselves are not directly neurotoxic, but rather their propagation involves production of toxic species, which may be uncoupled from infectivity.

963 citations