scispace - formally typeset
Search or ask a question
Author

Giovanna Tabellini

Bio: Giovanna Tabellini is an academic researcher from University of Brescia. The author has contributed to research in topics: Protein kinase B & PI3K/AKT/mTOR pathway. The author has an hindex of 37, co-authored 83 publications receiving 4400 citations. Previous affiliations of Giovanna Tabellini include University of Trieste & Brescia University.


Papers
More filters
Journal ArticleDOI
01 May 2007-Blood
TL;DR: A role for the ChemR23/chemerin axis in the recruitment of blood NK cells is proposed and chemerin is strongly implicate as a key factor for the colocalization of NK cells and DC subsets in pathologic peripheral tissues.

355 citations

Journal ArticleDOI
TL;DR: A novel subpopulation of human NK cells expressing high levels of PD‐1 is identified and characterized, which have the phenotypic characteristics of fully mature NK cells and are increased in patients with ovarian carcinoma.
Abstract: Background Programmed death 1 (PD-1) is an immunologic checkpoint that limits immune responses by delivering potent inhibitory signals to T cells on interaction with specific ligands expressed on tumor/virus-infected cells, thus contributing to immune escape mechanisms. Therapeutic PD-1 blockade has been shown to mediate tumor eradication with impressive clinical results. Little is known about the expression/function of PD-1 on human natural killer (NK) cells. Objective We sought to clarify whether human NK cells can express PD-1 and analyze their phenotypic/functional features. Methods We performed multiparametric cytofluorimetric analysis of PD-1 + NK cells and their functional characterization using degranulation, cytokine production, and proliferation assays. Results We provide unequivocal evidence that PD-1 is highly expressed (PD-1 bright ) on an NK cell subset detectable in the peripheral blood of approximately one fourth of healthy subjects. These donors are always serologically positive for human cytomegalovirus. PD-1 is expressed by CD56 dim but not CD56 bright NK cells and is confined to fully mature NK cells characterized by the NKG2A − KIR + CD57 + phenotype. Proportions of PD-1 bright NK cells were higher in the ascites of a cohort of patients with ovarian carcinoma, suggesting their possible induction/expansion in tumor environments. Functional analysis revealed a reduced proliferative capability in response to cytokines, low degranulation, and impaired cytokine production on interaction with tumor targets. Conclusions We have identified and characterized a novel subpopulation of human NK cells expressing high levels of PD-1. These cells have the phenotypic characteristics of fully mature NK cells and are increased in patients with ovarian carcinoma. They display low proliferative responses and impaired antitumor activity that can be partially restored by antibody-mediated disruption of PD-1/programmed death ligand interaction.

336 citations

Journal ArticleDOI
01 Jun 2006-Leukemia
TL;DR: The existing knowledge about PI3K/Akt signaling in AML cells is summarized, the rationale for targeting this fundamental signal transduction network by means of selective pharmacological inhibitors is examined and this pathway is an attractive target for the development of novel anticancer strategies.
Abstract: The phosphoinositide 3-kinase (PI3K)/Akt signaling pathway is crucial to many aspects of cell growth, survival and apoptosis, and its constitutive activation has been implicated in the both the pathogenesis and the progression of a wide variety of neoplasias. Hence, this pathway is an attractive target for the development of novel anticancer strategies. Recent studies showed that PI3K/Akt signaling is frequently activated in acute myeloid leukemia (AML) patient blasts and strongly contributes to proliferation, survival and drug resistance of these cells. Upregulation of the PI3K/Akt network in AML may be due to several reasons, including FLT3, Ras or c-Kit mutations. Small molecules designed to selectively target key components of this signal transduction cascade induce apoptosis and/or markedly increase conventional drug sensitivity of AML blasts in vitro. Thus, inhibitory molecules are currently being developed for clinical use either as single agents or in combination with conventional therapies. However, the PI3K/Akt pathway is important for many physiological cellular functions and, in particular, for insulin signaling, so that its blockade in vivo might cause severe systemic side effects. In this review, we summarize the existing knowledge about PI3K/Akt signaling in AML cells and we examine the rationale for targeting this fundamental signal transduction network by means of selective pharmacological inhibitors.

325 citations

Journal ArticleDOI
TL;DR: Evidence accumulated over the past 15 years has highlighted the presence of active Akt in the nucleus, where it acts as a fundamental component of key signaling pathways, and the most relevant findings about nuclear Akt are summarized.

181 citations

Journal ArticleDOI
10 Sep 2003-Leukemia
TL;DR: Testing whether or not a new selective Akt inhibitor was as effective as Ly294002 in lowering the sensitivity threshold of HL60 cells to chemotherapeutic drugs, TRAIL, ATRA, and ionizing radiation indicates that selective AkT pharmacological inhibitors might be used in the future for enhancing the sensitivity of leukemia cells to therapeutic treatments that induce apoptosis or for overcoming resistance to these treatments.
Abstract: It is now well established that the reduced capacity of tumor cells of undergoing cell death through apoptosis plays a key role both in the pathogenesis of cancer and in therapeutic treatment failure. Indeed, tumor cells frequently display multiple alterations in signal transduction pathways leading to either cell survival or apoptosis. In mammals, the pathway based on phosphoinositide 3-kinase (PI3K)/Akt conveys survival signals of extreme importance and its downregulation, by means of pharmacological inhibitors of PI3K, considerably lowers resistance to various types of therapy in solid tumors. We recently described an HL60 leukemia cell clone (HL60AR cells) with a constitutively active PI3K/Akt pathway. These cells were resistant to multiple chemotherapeutic drugs, all-trans-retinoic acid (ATRA), and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). Treatment with two pharmacological inhibitors of PI3K, wortmannin and Ly294002, restored sensitivity of HL60AR cells to the aforementioned treatments. However, these inhibitors have some drawbacks that may severely limit or impede their clinical use. Here, we have tested whether or not a new selective Akt inhibitor, 1L-6-hydroxymethyl-chiro-inositol 2(R)-2-O-methyl-3-O-octadecylcarbonate (Akt inhibitor), was as effective as Ly294002 in lowering the sensitivity threshold of HL60 cells to chemotherapeutic drugs, TRAIL, ATRA, and ionizing radiation. Our findings demonstrate that, at a concentration which does not affect PI3K activity, the Akt inhibitor markedly reduced resistance of HL60AR cells to etoposide, cytarabine, TRAIL, ATRA, and ionizing radiation. This effect was likely achieved through downregulation of expression of antiapoptotic proteins such as c-IAP1, c-IAP2, cFLIP(L), and of Bad phosphorylation on Ser 136. The Akt inhibitor did not influence PTEN activity. At variance with Ly294002, the Akt inhibitor did not negatively affect phosphorylation of protein kinase C-zeta and it was less effective in downregulating p70S6 kinase (p70S6K) activity. The Akt inhibitor increased sensitivity to apoptotic inducers of K562 and U937, but not of MOLT-4, leukemia cells. Overall, our results indicate that selective Akt pharmacological inhibitors might be used in the future for enhancing the sensitivity of leukemia cells to therapeutic treatments that induce apoptosis or for overcoming resistance to these treatments.

164 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Although NK cells might appear to be redundant in several conditions of immune challenge in humans, NK cell manipulation seems to hold promise in efforts to improve hematopoietic and solid organ transplantation, promote antitumor immunotherapy and control inflammatory and autoimmune disorders.
Abstract: Natural killer (NK) cells are effector lymphocytes of the innate immune system that control several types of tumors and microbial infections by limiting their spread and subsequent tissue damage. Recent research highlights the fact that NK cells are also regulatory cells engaged in reciprocal interactions with dendritic cells, macrophages, T cells and endothelial cells. NK cells can thus limit or exacerbate immune responses. Although NK cells might appear to be redundant in several conditions of immune challenge in humans, NK cell manipulation seems to hold promise in efforts to improve hematopoietic and solid organ transplantation, promote antitumor immunotherapy and control inflammatory and autoimmune disorders.

3,108 citations

01 Jan 1999
TL;DR: Caspases, a family of cysteine-dependent aspartate-directed proteases, are prominent among the death proteases as discussed by the authors, and they play critical roles in initiation and execution of this process.
Abstract: ■ Abstract Apoptosis is a genetically programmed, morphologically distinct form of cell death that can be triggered by a variety of physiological and pathological stimuli. Studies performed over the past 10 years have demonstrated that proteases play critical roles in initiation and execution of this process. The caspases, a family of cysteine-dependent aspartate-directed proteases, are prominent among the death proteases. Caspases are synthesized as relatively inactive zymogens that become activated by scaffold-mediated transactivation or by cleavage via upstream proteases in an intracellular cascade. Regulation of caspase activation and activity occurs at several different levels: ( a) Zymogen gene transcription is regulated; ( b) antiapoptotic members of the Bcl-2 family and other cellular polypeptides block proximity-induced activation of certain procaspases; and ( c) certain cellular inhibitor of apoptosis proteins (cIAPs) can bind to and inhibit active caspases. Once activated, caspases cleave a variety of intracellular polypeptides, including major structural elements of the cytoplasm and nucleus, components of the DNA repair machinery, and a number of protein kinases. Collectively, these scissions disrupt survival pathways and disassemble important architectural components of the cell, contributing to the stereotypic morphological and biochemical changes that characterize apoptotic cell death.

2,685 citations

Journal ArticleDOI
TL;DR: An overview of the most relevant modes of crosstalk and cooperativity between NF-κB and other signaling molecules during inflammation and cancer is provided.
Abstract: The NF-κB family of transcription factors has an essential role in inflammation and innate immunity. Furthermore, NF-κB is increasingly recognized as a crucial player in many steps of cancer initiation and progression. During these latter processes NF-κB cooperates with multiple other signaling molecules and pathways. Prominent nodes of crosstalk are mediated by other transcription factors such as STAT3 and p53 or the ETS related gene ERG. These transcription factors either directly interact with NF-κB subunits or affect NF-κB target genes. Crosstalk can also occur through different kinases, such as GSK3-β, p38, or PI3K, which modulate NF-κB transcriptional activity or affect upstream signaling pathways. Other classes of molecules that act as nodes of crosstalk are reactive oxygen species and miRNAs. In this review, we provide an overview of the most relevant modes of crosstalk and cooperativity between NF-κB and other signaling molecules during inflammation and cancer.

2,404 citations

Journal ArticleDOI
TL;DR: The Raf/MEK/ERK pathway has different effects on growth, prevention of apoptosis, cell cycle arrest and induction of drug resistance in cells of various lineages which may be due to the presence of functional p53 and PTEN and the expression of lineage specific factors.

2,096 citations

Journal ArticleDOI
TL;DR: Through a greater focus on patient selection, increased understanding of immune modulation and strategic application of rational combinations, it should be possible to realize the potential of this promising class of targeted anticancer agents.
Abstract: The central role of phosphoinositide 3-kinase (PI3K) activation in tumour cell biology has prompted a sizeable effort to target PI3K and/or downstream kinases such as AKT and mammalian target of rapamycin (mTOR) in cancer. However, emerging clinical data show limited single-agent activity of inhibitors targeting PI3K, AKT or mTOR at tolerated doses. One exception is the response to PI3Kδ inhibitors in chronic lymphocytic leukaemia, where a combination of cell-intrinsic and -extrinsic activities drive efficacy. Here, we review key challenges and opportunities for the clinical development of inhibitors targeting the PI3K-AKT-mTOR pathway. Through a greater focus on patient selection, increased understanding of immune modulation and strategic application of rational combinations, it should be possible to realize the potential of this promising class of targeted anticancer agents.

1,396 citations