scispace - formally typeset
Search or ask a question
Author

Giovanni Buccino

Other affiliations: University of Parma
Bio: Giovanni Buccino is an academic researcher from Magna Græcia University. The author has contributed to research in topics: Mirror neuron & Premotor cortex. The author has an hindex of 47, co-authored 101 publications receiving 18090 citations. Previous affiliations of Giovanni Buccino include University of Parma.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors used functional magnetic resonance imaging (fMRI) to localize brain areas that were active during the observation of actions made by another individual, including object-related and non-object-related actions made with different effectors.
Abstract: Functional magnetic resonance imaging (fMRI) was used to localize brain areas that were active during the observation of actions made by another individual. Object- and non-object-related actions made with different effectors (mouth, hand and foot) were presented. Observation of both object- and non-object-related actions determined a somatotopically organized activation of premotor cortex. The somatotopic pattern was similar to that of the classical motor cortex homunculus. During the observation of object-related actions, an activation, also somatotopically organized, was additionally found in the posterior parietal lobe. Thus, when individuals observe an action, an internal replica of that action is automatically generated in their premotor cortex. In the case of object-related actions, a further object-related analysis is performed in the parietal lobe, as if the subjects were indeed using those objects. These results bring the previous concept of an action observation/execution matching system (mirror system) into a broader perspective: this system is not restricted to the ventral premotor cortex, but involves several somatotopically organized motor circuits.

2,085 citations

Journal ArticleDOI
TL;DR: Functional magnetic resonance imaging revealed that premotor mirror neuron areas—areas active during the execution and the observation of an action—previously thought to be involved only in action recognition are actually also involved in understanding the intentions of others.
Abstract: Understanding the intentions of others while watching their actions is a fundamental building block of social behavior. The neural and functional mechanisms underlying this ability are still poorly understood. To investigate these mechanisms we used functional magnetic resonance imaging. Twenty-three subjects watched three kinds of stimuli: grasping hand actions without a context, context only (scenes containing objects), and grasping hand actions performed in two different contexts. In the latter condition the context suggested the intention associated with the grasping action (either drinking or cleaning). Actions embedded in contexts, compared with the other two conditions, yielded a significant signal increase in the posterior part of the inferior frontal gyrus and the adjacent sector of the ventral premotor cortex where hand actions are represented. Thus, premotor mirror neuron areas—areas active during the execution and the observation of an action—previously thought to be involved only in action recognition are actually also involved in understanding the intentions of others. To ascribe an intention is to infer a forthcoming new goal, and this is an operation that the motor system does automatically.

1,819 citations

01 Jan 2001
TL;DR: Results bring the previous concept of an action observation/execution matching system (mirror system) into a broader perspective: this system is not restricted to the ventral premotor cortex, but involves several somatotopically organized motor circuits.
Abstract: Functional magnetic resonance imaging (fMRI) was used to localize brain areas that were active during the observation of actions made by another individual. Object- and non-object-related actions made with different effectors (mouth, hand and foot) were presented. Observation of both object- and non-object-related actions determined a somatotopically organized activation of premotor cortex. The somatotopic pattern was similar to that of the classical motor cortex homunculus. During the observation of object-related actions, an activation, also somatotopically organized, was additionally found in the posterior parietal lobe. Thus, when individuals observe an action, an internal replica of that action is automatically generated in their premotor cortex. In the case of object-related actions, a further object-related analysis is performed in the parietal lobe, as if the subjects were indeed using those objects. These results bring the previous concept of an action observation/execution matching system (mirror system) into a broader perspective: this system is not restricted to the ventral premotor cortex, but involves several somatotopically organized motor circuits.

1,326 citations

Journal ArticleDOI
TL;DR: Results bring the previous concept of an action observation/execution matching system (mirror system) into a broader perspective: this system is not restricted to the ventral premotor cortex, but involves several somatotopically organized motor circuits.

1,004 citations

Journal ArticleDOI
TL;DR: The results showed that listening to action-related sentences activates a left fronto-parieto-temporal network that includes the pars opercularis of the inferior frontal gyrus (Broca's area), as well as the inferior parietal lobule, the intraparietal sulcus, and the posterior middle temporal gyrus.
Abstract: Observing actions made by others activates the cortical circuits responsible for the planning and execution of those same actions This observation–execution matching system (mirror-neuron system) is thought to play an important role in the understanding of actions made by others In an fMRI experiment, we tested whether this system also becomes active during the processing of action-related sentences Participants listened to sentences describing actions performed with the mouth, the hand, or the leg Abstract sentences of comparable syntactic structure were used as control stimuli The results showed that listening to action-related sentences activates a left fronto-parieto-temporal network that includes the pars opercularis of the inferior frontal gyrus (Broca's area), those sectors of the premotor cortex where the actions described are motorically coded, as well as the inferior parietal lobule, the intraparietal sulcus, and the posterior middle temporal gyrus These data provide the first direct evidence that listening to sentences that describe actions engages the visuomotor circuits which subserve action execution and observation

986 citations


Cited by
More filters
Book
01 Jan 2012
Abstract: Experience and Educationis the best concise statement on education ever published by John Dewey, the man acknowledged to be the pre-eminent educational theorist of the twentieth century. Written more than two decades after Democracy and Education(Dewey's most comprehensive statement of his position in educational philosophy), this book demonstrates how Dewey reformulated his ideas as a result of his intervening experience with the progressive schools and in the light of the criticisms his theories had received. Analysing both "traditional" and "progressive" education, Dr. Dewey here insists that neither the old nor the new education is adequate and that each is miseducative because neither of them applies the principles of a carefully developed philosophy of experience. Many pages of this volume illustrate Dr. Dewey's ideas for a philosophy of experience and its relation to education. He particularly urges that all teachers and educators looking for a new movement in education should think in terms of the deeped and larger issues of education rather than in terms of some divisive "ism" about education, even such an "ism" as "progressivism." His philosophy, here expressed in its most essential, most readable form, predicates an American educational system that respects all sources of experience, on that offers a true learning situation that is both historical and social, both orderly and dynamic.

10,294 citations

Journal ArticleDOI
TL;DR: A neurophysiological mechanism appears to play a fundamental role in both action understanding and imitation, and those properties specific to the human mirror-neuron system that might explain the human capacity to learn by imitation are stressed.
Abstract: A category of stimuli of great importance for primates, humans in particular, is that formed by actions done by other individuals. If we want to survive, we must understand the actions of others. Furthermore, without action understanding, social organization is impossible. In the case of humans, there is another faculty that depends on the observation of others' actions: imitation learning. Unlike most species, we are able to learn by imitation, and this faculty is at the basis of human culture. In this review we present data on a neurophysiological mechanism--the mirror-neuron mechanism--that appears to play a fundamental role in both action understanding and imitation. We describe first the functional properties of mirror neurons in monkeys. We review next the characteristics of the mirror-neuron system in humans. We stress, in particular, those properties specific to the human mirror-neuron system that might explain the human capacity to learn by imitation. We conclude by discussing the relationship between the mirror-neuron system and language.

6,747 citations

Journal ArticleDOI
TL;DR: In this paper, the organization of networks in the human cerebrum was explored using resting-state functional connectivity MRI data from 1,000 subjects and a clustering approach was employed to identify and replicate networks of functionally coupled regions across the cerebral cortex.
Abstract: Information processing in the cerebral cortex involves interactions among distributed areas. Anatomical connectivity suggests that certain areas form local hierarchical relations such as within the visual system. Other connectivity patterns, particularly among association areas, suggest the presence of large-scale circuits without clear hierarchical relations. In this study the organization of networks in the human cerebrum was explored using resting-state functional connectivity MRI. Data from 1,000 subjects were registered using surface-based alignment. A clustering approach was employed to identify and replicate networks of functionally coupled regions across the cerebral cortex. The results revealed local networks confined to sensory and motor cortices as well as distributed networks of association regions. Within the sensory and motor cortices, functional connectivity followed topographic representations across adjacent areas. In association cortex, the connectivity patterns often showed abrupt transitions between network boundaries. Focused analyses were performed to better understand properties of network connectivity. A canonical sensory-motor pathway involving primary visual area, putative middle temporal area complex (MT+), lateral intraparietal area, and frontal eye field was analyzed to explore how interactions might arise within and between networks. Results showed that adjacent regions of the MT+ complex demonstrate differential connectivity consistent with a hierarchical pathway that spans networks. The functional connectivity of parietal and prefrontal association cortices was next explored. Distinct connectivity profiles of neighboring regions suggest they participate in distributed networks that, while showing evidence for interactions, are embedded within largely parallel, interdigitated circuits. We conclude by discussing the organization of these large-scale cerebral networks in relation to monkey anatomy and their potential evolutionary expansion in humans to support cognition.

6,284 citations

Journal ArticleDOI
TL;DR: A new, MATLAB based toolbox for the SPM2 software package is introduced which enables the integration of probabilistic cytoarchitectonic maps and results of functional imaging studies and an easy-to-use tool for the integrated analysis of functional and anatomical data in a common reference space.

3,911 citations